We investigate the intrinsic reverse leakage mechanisms in Ni-based Schottky barrier diodes (SBDs) fabricated on a (2¯01) single crystal β-Ga2O3 substrate, where a uniform bulk reverse leakage current has been designed and confirmed. The temperature-dependent reverse leakage characteristics are analyzed by a numerical reverse leakage model, which includes both the image-force lowering and doping effects. We found that the reverse leakage current is near-ideal and dominated by Schottky barrier tunneling throughout the entire range of the surface electric field from 0.8 MV/cm to 3.4 MV/cm. The extracted barrier height from the reverse leakage model is consistent with the values extracted from the forward current–voltage and capacitance–voltage measurements. The practical maximum electric field, defined by the maximum allowable reverse leakage current levels, is calculated as a function of the barrier height. These results suggest that it is possible to approach the intrinsic breakdown electric field in β-Ga2O3 SBDs, as long as a sufficiently high barrier height (∼2.2 to 3 eV) is employed.

1.
M.
Higashiwaki
and
G. H.
Jessen
,
Appl. Phys. Lett.
112
,
060401
(
2018
).
2.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
3.
K.
Ghosh
and
U.
Singisetti
,
J. Appl. Phys.
124
,
085707
(
2018
).
4.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
,
Appl. Phys. Lett.
114
,
250601
(
2019
).
5.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
109
,
212101
(
2016
).
6.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
,
034001
(
2016
).
7.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys., Part 1
55
,
1202A2
(
2016
).
8.
W.
Li
,
Z.
Hu
,
K.
Nomoto
,
R.
Jinno
,
Z.
Zhang
,
T. Q.
Tu
,
K.
Sasaki
,
A.
Kuramata
,
D.
Jena
, and
H. G.
Xing
, in
2018 IEEE International Electron Devices Meeting (IEDM)
(
2018
), p.
8.5.1
.
9.
Z.
Hu
,
H.
Zhou
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
,
K.
Dang
,
Y.
Cai
,
Z.
Feng
,
Y.
Gao
,
X.
Kang
, and
Y.
Hao
,
IEEE Electron Device Lett.
39
,
1564
(
2018
).
10.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
7
,
Q92
(
2018
).
11.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
N.
Tanen
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
39
,
869
(
2018
).
12.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, in
2019 IEEE International Electron Devices Meeting (IEDM)
(
2019
), p.
12.4.1
.
13.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
Appl. Phys. Express
12
,
081003
(
2019
).
14.
K.
Tetzner
,
E. B.
Treidel
,
O.
Hilt
,
A.
Popp
,
S. B.
Anooz
,
G.
Wagner
,
A.
Thies
,
K.
Ickert
,
H.
Gargouri
, and
J.
Würfl
,
IEEE Electron Device Lett.
40
,
1503
(
2019
).
15.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
41
,
107
(
2020
).
16.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Appl. Phys. Lett.
112
,
032108
(
2018
).
17.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
18.
C.
Hou
,
R. M.
Gazoni
,
R. J.
Reeves
, and
M. W.
Allen
,
IEEE Electron Device Lett.
40
,
1587
(
2019
).
19.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
A.
Koukitu
,
A.
Kuramata
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
108
,
133503
(
2016
).
20.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, in
2019 Device Research Conference (DRC)
(
2019
), p.
209
.
21.
B.
Wang
,
M.
Xiao
,
X.
Yan
,
H. Y.
Wong
,
J.
Ma
,
K.
Sasaki
,
H.
Wang
, and
Y.
Zhang
,
Appl. Phys. Lett.
115
,
263503
(
2019
).
22.
L.
Zhou
,
X.
Lu
,
L.
Chen
,
X.
Ouyang
,
B.
Liu
,
J.
Xu
, and
H.
Tang
,
ECS J. Solid State Sci. Technol.
8
,
Q3054
(
2019
).
23.
H.
Fu
,
H.
Chen
,
X.
Huang
,
I.
Baranowski
,
J.
Montes
,
T. H.
Yang
, and
Y.
Zhao
,
IEEE Trans. Electron Devices
65
,
3507
(
2018
).
24.
T. H.
Yang
,
H.
Fu
,
H.
Chen
,
X.
Huang
,
J.
Montes
,
I.
Baranowski
,
K.
Fu
, and
Y.
Zhao
,
J. Semicond.
40
,
012801
(
2019
).
25.
E. L.
Murphy
and
R. H.
Good
, Jr.
,
Phys. Rev.
102
,
1464
(
1956
).
26.
F. A.
Padovani
and
R.
Stratton
,
Solid State Electron.
9
,
695
(
1966
).
27.
B.
Hoeneisen
,
C. A.
Mead
, and
M.-A.
Nicolet
,
Solid State Electron.
14
,
1057
(
1971
).
28.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Status Solidi B
252
,
828
(
2015
).
29.
Y.
Zhang
,
A.
Neal
,
Z.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
,
K.
Chabak
,
G.
Jessen
,
J.
Hwang
,
S.
Mou
,
J. P.
Heremans
, and
S.
Rajan
,
Appl. Phys. Lett.
112
,
173502
(
2018
).
30.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
R.
Khanna
,
K.
Bevlin
,
D.
Geerpuram
,
S. J.
Pearton
, and
A.
Kuramata
,
Appl. Phys. Lett.
110
,
142101
(
2017
).
31.
L.
Zhang
,
A.
Verma
,
H. G.
Xing
, and
D.
Jena
,
Jpn. J. Appl. Phys., Part 1
56
,
030304
(
2017
).
32.
W.
Li
,
Z.
Hu
,
K.
Nomoto
,
Z.
Zhang
,
J. Y.
Hsu
,
Q. T.
Thieu
,
K.
Sasaki
,
A.
Kuramata
,
D.
Jena
, and
H. G.
Xing
,
Appl. Phys. Lett.
113
,
202101
(
2018
).
33.
H.
Fukushima
,
S.
Usami
,
M.
Ogura
,
Y.
Ando
,
A.
Tanaka
,
M.
Deki
,
M.
Kushimoto
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD25
(
2019
).
34.
W.
Mönch
,
J. Vac. Sci. Technol., B
17
,
1867
(
1999
).
35.
C.
Hou
,
R. M.
Gazoni
,
R. J.
Reeves
, and
M. W.
Allen
,
IEEE Electron Device Lett.
40
,
337
(
2019
).
36.
See http://www.wolfspeed.com/power/products/sic-schottky-diodes/table for “
SiC Schottky Diodes
” (last accessed February 13,
2020
).
37.
P. H.
Carey
,
J.
Yang
,
F.
Ren
,
R.
Sharma
,
M.
Law
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3221
(
2019
).
38.
T.
Harada
,
S.
Ito
, and
A.
Tsukazaki
,
Sci. Adv.
5
,
eaax5733
(
2019
).
You do not currently have access to this content.