Memristor devices have history-dependent charge transport properties that are ideal for neuromorphic computing applications. We reveal a memristor material and mechanism in the layered Mott insulator α-RuCl3. The pinched hysteresis loops and S-shaped negative differential resistance in bulk crystals verify memristor behavior and are attributed to a nonlinear coupling between charge injection over a Schottky barrier at the electrical contacts and concurrent Joule heating. Direct simulations of this coupling can reproduce the device characteristics.

Supplementary Material

You do not currently have access to this content.