Germanium Metal-Ferroelectric-Semiconductor (MFS) capacitors based on ferroelectric Hf1−xZrxO2 (HZO) with clean, oxide free Ge/HZO interfaces emerge as an interesting layer structure for the fabrication of ferroelectric field effect transistor (FeFET) non-volatile memory devices. It is shown that, at low temperature (<160 K), a semiconductor depletion forms in Ge near the interface, resulting in an increase in coercive voltage by about 2 V, accompanied by a distortion of the ferroelectric hysteresis with subloop asymmetric behavior, which becomes more severe at higher frequencies of measurement. At higher temperatures, the Ge surface near the ferroelectric is easily inverted due to the low energy gap of Ge, providing sufficient screening of the polarization charge by minority free carriers, in which case, nearly ideal, symmetric hysteresis curves are recovered. The depolarization field is experimentally extracted from the coercive voltage and the capacitance measurements, is found to be ∼ 2.2 MV/cm in the low temperature range, comparable to the coercive field, then rapidly decreases at higher temperatures, and effectively diminishes at room temperature. This makes Ge MFSs good candidates for FeFETs for low voltage non-volatile memory with improved reliability.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
J.
Müller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
,
ECS J. Solid State Sci. Technol.
4
,
N30
(
2015
).
3.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
,
J.
Müller
,
A.
Kersch
,
U.
Schroeder
,
T.
Mikolajick
, and
C. S.
Hwang
,
Adv. Mater.
27
,
1811
(
2015
).
4.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
(
2018
).
5.
S. J.
Kim
,
J.
Mohan
,
S. R.
Summerfelt
, and
J.
Kim
,
JOM
71
,
246
(
2019
).
6.
T.
Francois
,
L.
Grenouillet
,
J.
Coignus
,
P.
Blaise
,
C.
Carabasse
,
N.
Vaxelaire
,
T.
Magis
,
F.
Aussenac
,
V.
Loup
,
C.
Pellissier
,
S.
Slesazeck
,
V.
Havel
,
C.
Richter
,
A.
Makosiej
,
B.
Giraud
,
E.
Breyer
,
M.
Materano
,
P.
Chiquet
,
M.
Bocquet
,
E.
Nowak
,
U.
Schroeder
, and
F.
Gaillard
, in
IEEE International Electron Devices Meeting
(
2019
), p.
15.7.1
.
7.
J.
Mueller
,
S.
Slesazeck
, and
T.
Mikolajick
,
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties, and Devices
, 1st ed. (
Elsevier
,
Duxford, UK
,
2019
), Chap. 10.4.
8.
H.
Mulaosmanovic
,
J.
Ocker
,
S.
Müller
,
M.
Noack
,
J.
Müller
,
P.
Polakowski
,
T.
Mikolajick
, and
S.
Slesazeck
, in
Symposium on VLSI Technology
(
2017
), p.
T176
.
9.
M.
Jerry
,
P. Y.
Chen
,
J.
Zhang
,
P.
Sharma
,
K.
Ni
,
S.
Yu
, and
S.
Datta
, in
IEEE International Electron Devices Meeting
(
2017
), p.
6.2.1
.
10.
M. K.
Kim
and
J. S.
Lee
,
Nano Lett.
19
,
2044
(
2019
).
11.
S.
Oh
,
H.
Hwang
, and
I. K.
Yoo
,
APL Mater.
7
,
091109
(
2019
).
12.
S.
Oh
,
J.
Song
,
I. K.
Yoo
, and
H.
Hwang
,
IEEE Electron Device Lett.
40
,
1092
(
2019
).
13.
See IRDS 2017, https://irds.ieee.org/roadmap-2017, for information about Ge considered as a high mobility material for p-channel MOSFETs in subsequent technology nodes beyond 2024.
14.
W.
Chung
,
M.
Si
, and
P. D.
Ye
, in
IEEE International Electron Devices Meeting
(
2018
), p.
15.2.1
.
15.
W.
Chung
,
M.
Si
,
P. R.
Shrestha
,
J. P.
Campbell
,
K. P.
Cheung
, and
P. D.
Ye
, in
Symposium on VLSI Technology
(
2018
), p.
89
.
16.
J.
Zhou
,
G.
Han
,
Q.
Li
,
Y.
Peng
,
X.
Lu
,
C.
Zhang
,
J.
Zhang
,
Q.-Q.
Sun
,
D. W.
Zhang
, and
Y.
Hao
, in
IEEE International Electron Devices Meeting
(
2016
), p.
310
.
17.
C.-J.
Su
,
Y.-T.
Tang
,
Y.-C.
Tsou
,
P.-J.
Sung
,
F.-J.
Hou
,
C.-J.
Wang
,
S.-T.
Chung
,
C.-Y.
Hsieh
,
Y.-S.
Yeh
,
F.-K.
Hsueh
,
K.-H.
Kao
,
S.-S.
Chuang
,
C.-T.
Wu
,
T.-Y.
You
,
Y.-L.
Jian
,
T.-H.
Chou
,
Y.-L.
Shen
,
B.-Y.
Chen
,
G.-L.
Luo
,
T.-C.
Hong
,
K.-P.
Huang
,
M.-C.
Chen
,
Y.-J.
Lee
,
T.-S.
Chao
,
T.-Y.
Tseng
,
W.-F.
Wu
,
G.-W.
Huang
,
J.-M.
Shieh
,
W.-K.
Yeh
, and
Y.-H.
Wang
, in
Symposium on VLSI Technology
(
2017
), p.
T152
.
18.
A.
Dimoulas
,
G.
Mavrou
,
G.
Vellianitis
,
E.
Evangelou
, and
N.
Boukos
,
Appl. Phys. Lett.
86
,
032908
(
2005
).
19.
A.
Dimoulas
,
D. P.
Brunco
,
S.
Ferrari
,
J. W.
Seo
,
Y.
Panayiotatos
,
A.
Sotiropoulos
,
T.
Conard
,
M.
Caymax
,
S.
Spiga
,
M.
Fanciulli
,
C.
Dieker
,
E. K.
Evangelou
,
S.
Galata
,
M.
Houssa
, and
M. M.
Heyns
,
Thin Solid Films
515
,
6337
(
2007
).
20.
C.
Zacharaki
,
P.
Tsipas
,
S.
Chaitoglou
,
S.
Fragkos
,
M.
Axiotis
,
A.
Lagoyiannis
,
R.
Negrea
,
L.
Pintilie
, and
A.
Dimoulas
,
Appl. Phys. Lett.
114
,
112901
(
2019
).
21.
X.
Tian
,
L.
Xu
,
S.
Shibayama
,
T.
Nishimura
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
, in
IEEE International Electron Devices Meeting
(
2017
), p.
816
.
22.
X.
Tian
,
S.
Shibayama
,
T.
Nishimura
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
,
Appl. Phys. Lett.
112
,
102902
(
2018
).
23.
Y.
Goh
and
S.
Jeon
,
Nanotechnology
29
,
335201
(
2018
).
24.
P. D.
Lomenzo
,
Q.
Takmeel
,
C. M.
Fancher
,
C.
Zhou
,
N. G.
Rudawski
,
S.
Moghaddam
,
J. L.
Jones
, and
T.
Nishida
,
IEEE Electron Device Lett.
36
,
766
(
2015
).
25.
V. L.
Ginzburg
,
J. Phys. USSR
10
,
107
(
1946
).
26.
D.
Zhou
,
Y.
Guan
,
M. M.
Vopson
,
J.
Xu
,
H.
Liang
,
F.
Cao
,
X.
Dong
,
J.
Mueller
,
T.
Schenk
, and
U.
Schroeder
,
Acta Mater.
99
,
240
(
2015
).
27.
T. P.
Ma
and
J.-P.
Han
,
IEEE Electron Device Lett.
23
,
386
(
2002
).
28.
M.
Vopsaroiu
,
J.
Blackburn
,
M. G.
Cain
, and
P. M.
Weaver
,
Phys. Rev. B
82
,
024109
(
2010
).
You do not currently have access to this content.