The suppression of a thermally excited electron-spin relaxation in InGaAs quantum dots (QDs) using p-doped capping layers toward enhanced room-temperature (RT) spin polarization has been demonstrated, in which the electron-spin polarization in QD excited states (ESs) was measured through time-resolved spin-dependent photoluminescence. We revealed that the p-doping of QDs can enhance the emission intensity of QD-ES by approximately twofold to threefold over a wide temperature range. An electron-spin relaxation time of 106 ps was observed at 293 K for p-doped QDs, which is approximately three times longer than the radiative lifetime of 36 ps, relative to the shorter electron-spin relaxation time of 71 ps for undoped QDs. The increased electron-spin lifetime was mainly attributed to the suppressed relaxation of the electron spin reinjected from the p-doped capping barrier after thermal escape from an ES, where the D'yakonov-Perel' spin relaxation in the barrier was potentially weakened through impurity scattering. These results suggest that InGaAs QDs with p-doped capping layers have a significant advantage for use in spin-functional optical active layers with a higher spin polarization toward RT.

1.
C. H.
Li
,
G.
Kioseoglou
,
O. M. J.
van't Erve
,
M. E.
Ware
,
D.
Gammon
,
R. M.
Stroud
,
B. T.
Jonker
,
R.
Mallory
,
M.
Yasar
, and
A.
Petrou
,
Appl. Phys. Lett.
86
,
132503
(
2005
).
2.
L.
Lombez
,
P.
Renucci
,
P. F.
Braun
,
H.
Carrère
,
X.
Marie
,
T.
Amand
,
B.
Urbaszek
,
J. L.
Gauffier
,
P.
Gallo
,
T.
Camps
,
A.
Arnoult
,
C.
Fontaine
,
C.
Deranlot
,
R.
Mattana
,
H.
Jaffrès
,
J.-M.
George
, and
P. H.
Binh
,
Appl. Phys. Lett.
90
,
081111
(
2007
).
3.
S.
Hövel
,
N. C.
Gerhardt
,
M. R.
Hofmann
,
F.-Y.
Lo
,
D.
Reuter
,
A. D.
Wieck
,
E.
Schuster
,
W.
Keune
,
H.
Wende
,
O.
Petracic
, and
K.
Westerholt
,
Appl. Phys. Lett.
92
,
242102
(
2008
).
4.
L.
Zhu
,
W.
Huang
,
P.
Renucci
,
X.
Marie
,
Y.
Liu
,
Y.
Li
,
Q.
Wu
,
Y.
Zhang
,
B.
Xu
,
Y.
Lu
, and
Y.
Chen
,
Phys. Rev. Appl.
8
,
064022
(
2017
).
5.
A. V.
Khaetskii
and
Y. V.
Nazarov
,
Phys. Rev. B
61
,
12639
(
2000
).
6.
P.
Borri
,
W.
Langbein
,
S.
Schneider
, and
U.
Woggon
,
Phys. Rev. Lett.
87
,
157401
(
2001
).
7.
K.
Gündoğdu
,
K. C.
Hall
,
T. F.
Boggess
,
D. G.
Deppe
, and
O. B.
Shchekin
,
Appl. Phys. Lett.
85
,
4570
(
2004
).
8.
K.
Gündoğdu
,
K. C.
Hall
,
T. F.
Boggess
,
D. G.
Deppe
, and
O. B.
Shchekin
,
Appl. Phys. Lett.
84
,
2793
(
2004
).
9.
E.
Harbord
,
P.
Spencer
,
E.
Clarke
, and
R.
Murray
,
Phys. Rev. B
80
,
195312
(
2009
).
10.
K.
Gündoğdu
,
K. C.
Hall
,
E. J.
Koerperick
,
C. E.
Pryor
,
M. E.
Flatté
,
T. F.
Boggess
,
O. B.
Shchekin
, and
D. G.
Deppe
,
Appl. Phys. Lett.
86
,
113111
(
2005
).
11.
S.
Marcinkevičius
,
J.
Siegert
, and
Q. X.
Zhao
,
J. Appl. Phys.
100
,
054310
(
2006
).
12.
M. W.
Taylor
,
E.
Harbord
,
P.
Spencer
,
E.
Clarke
,
G.
Slavcheva
, and
R.
Murray
,
Appl. Phys. Lett.
97
,
171907
(
2010
).
13.
A. I.
Tartakovskii
,
J.
Cahill
,
M. N.
Makhonin
,
D. M.
Whittaker
,
J.-P. R.
Wells
,
A. M.
Fox
,
D. J.
Mowbray
,
M. S.
Skolnick
,
K. M.
Groom
,
M. J.
Steer
, and
M.
Hopkinson
,
Phys. Rev. Lett.
93
,
057401
(
2004
).
14.
P.-F.
Braun
,
X.
Marie
,
L.
Lombez
,
B.
Urbaszek
,
T.
Amand
,
P.
Renucci
,
V. K.
Kalevich
,
K. V.
Kavokin
,
O.
Krebs
,
P.
Voisin
, and
Y.
Masumoto
,
Phys. Rev. Lett.
94
,
116601
(
2005
).
15.
V. K.
Kalevich
,
M.
Paillard
,
K. V.
Kavokin
,
X.
Marie
,
A. R.
Kovsh
,
T.
Amand
,
A. E.
Zhukov
,
Yu. G.
Musikhin
,
V. M.
Ustinov
,
E.
Vanelle
, and
B. P.
Zakharchenya
,
Phys. Rev. B
64
,
045309
(
2001
).
16.
S.
Hiura
,
K.
Takeishi
,
M.
Urabe
,
K.
Itabashi
,
J.
Takayama
,
T.
Kiba
,
K.
Sueoka
, and
A.
Murayama
,
Appl. Phys. Lett.
113
,
023104
(
2018
).
17.
S.
Hiura
,
M.
Urabe
,
K.
Takeishi
,
K.
Itabashi
,
J.
Takayama
,
T.
Kiba
,
K.
Sueoka
, and
A.
Murayama
,
Semicond. Sci. Technol.
34
,
025001
(
2019
).
18.
S.
Hiura
,
S.
Saito
,
J.
Takayama
,
T.
Kiba
, and
A.
Murayama
,
Appl. Phys. Lett.
115
,
013102
(
2019
).
19.
S.
Sato
,
S.
Hiura
,
J.
Takayama
, and
A.
Murayama
,
J. Appl. Phys.
127
,
043904
(
2020
).
20.
F.
Meier
and
B.
Zakharchenya
,
Optical Orientation
(
Elsevier
,
North Holland, Amsterdam
,
1984
).
21.
S.
Paul
,
J. B.
Roy
, and
P. K.
Basu
,
J. Appl. Phys.
69
,
827
(
1991
).
22.
Y.
Puttisong
,
Y.
Haung
,
I.
Buyanova
,
X. J.
Yang
,
A.
Subagyo
,
K.
Sueoka
,
A.
Murayama
, and
W. M.
Chen
,
Appl. Phys. Lett.
105
,
132106
(
2014
).
23.
M. W.
Taylor
,
P.
Spencer
, and
R.
Murray
,
Appl. Phys. Lett.
106
,
122404
(
2015
).
24.
T.
Kiba
,
X. J.
Yang
,
T.
Yamamura
,
Y.
Kuno
,
A.
Subagyo
,
K.
Sueoka
, and
A.
Murayama
,
Appl. Phys. Lett.
103
,
082405
(
2013
).
25.
T.
Yamamura
,
T.
Kiba
,
X. J.
Yang
,
J.
Takayama
,
A.
Subagyo
,
K.
Sueoka
, and
A.
Murayama
,
J. Appl. Phys.
116
,
094309
(
2014
).
26.
S.
Birner
,
T.
Zibold
,
T.
Andlauer
,
T.
Kubis
,
M.
Sabathil
,
A.
Trellakis
, and
P.
Vogl
,
IEEE Trans. Electron Devices
54
,
2137
(
2007
).
27.
R. S.
Britton
,
T.
Grevatt
,
A.
Malinowski
,
R. T.
Harley
,
P.
Perozzo
,
A. R.
Cameron
, and
A.
Miller
,
Appl. Phys. Lett.
73
,
2140
(
1998
).
28.
J. H.
Jiang
and
M. W.
Wu
,
Phys. Rev. B
79
,
125206
(
2009
).
29.
Y.
Zhou
,
J. H.
Jiang
, and
M. W.
Wu
,
New J. Phys.
11
,
113039
(
2009
).
30.
H. C.
Schneider
and
M.
Krauß
,
Proc. SPIE
7600
,
76001D
(
2010
).
You do not currently have access to this content.