Monodisperse lipid-coated microbubbles are a promising avenue to unlock the full potential of ultrasound contrast agents for medical diagnosis and therapy. However, their formation by microfluidic flow-focusing is non-trivial. The lipid monolayer shell around the freshly formed bubbles is initially loosely packed, resulting in gas exchange between bubbles through Ostwald ripening, eventually leading to the formation of large, potentially thrombogenic, foam bubbles. Here, we show that by formulating a gas mixture of a low- and a high-aqueous solubility gas, a microbubble suspension can be formed that is not only monodisperse and highly stable, but it can also be synthesized without foam bubble formation at clinically relevant concentrations. The optimal gas volume fraction and resulting gas composition of the stable bubbles are modeled and were found to be in excellent agreement with the experimental data. This physics approach to an interfacial chemistry problem therefore opens a route to bedside production of stable, safe, and readily injectable monodisperse bubbles for medical applications.

1.
S.
Roovers
,
T.
Segers
,
G.
Lajoinie
,
J.
Deprez
,
M.
Versluis
,
S. C. D.
Smedt
, and
I.
Lentacker
,
Langmuir
35
,
10173
(
2019
).
2.
3.
M.
Versluis
,
E.
Stride
,
G.
Lajoinie
,
B.
Dollet
, and
T.
Segers
, “
Ultrasound contrast agents modeling: A review
” (unpublished).
5.
T.
Segers
,
P.
Kruizinga
,
M. P.
Kok
,
G.
Lajoinie
,
N.
De Jong
, and
M.
Versluis
,
Ultrasound Med. Biol.
44
,
1482
(
2018
).
6.
J. R.
Lindner
,
Nat. Rev. Drug Discovery
3
,
527
(
2004
).
7.
T.
Segers
,
N.
de Jong
, and
M.
Versluis
,
J. Acoust. Soc. Am.
140
,
2506
(
2016
).
8.
J. M.
Tsutsui
,
F.
Xie
, and
R. T.
Porter
,
Cardiovasc. Ultrasound
2
,
23
(
2004
).
9.
S.
Hernot
and
A. L.
Klibanov
,
Adv. Drug Delivery Rev.
60
,
1153
(
2008
).
10.
H.
Dewitte
,
K.
Vanderperren
,
H.
Haers
,
E.
Stock
,
L.
Duchateau
,
M.
Hesta
,
J. H.
Saunders
,
S. C.
De Smedt
, and
I.
Lentacker
,
Theranostics
5
,
97
(
2015
).
11.
A. R.
Carson
,
C. F.
McTiernan
,
L.
Lavery
,
M.
Grata
,
X.
Leng
,
J.
Wang
,
X.
Chen
, and
F. S.
Villanueva
,
Cancer Res.
72
,
6191
(
2012
).
12.
B.
Helfield
,
X.
Chen
,
S.
Watkins
, and
F.
Villanueva
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
9983
(
2016
).
13.
J. J.
Choi
,
J. A.
Feshitan
,
B.
Baseri
,
S.
Wang
,
Y.-S.
Tung
,
M. A.
Borden
, and
E. E.
Konofagou
,
IEEE Trans. Biomed. Eng.
57
,
145
(
2010
).
14.
C. A.
Molina
,
A. D.
Barreto
,
G.
Tsivgoulis
,
P.
Sierzenski
,
M. D.
Malkoff
,
M.
Rubiera
,
N.
Gonzales
,
R.
Mikulik
,
G.
Pate
,
J.
Ostrem
 et al,
Ann. Neurol.
66
,
28
(
2009
).
15.
M.
Emmer
,
H. J.
Vos
,
D. E.
Goertz
,
A.
van Wamel
,
M.
Versluis
, and
N.
de Jong
,
Ultrasound Med. Biol.
35
,
102
(
2009
).
16.
D. E.
Goertz
,
N.
de Jong
, and
A. F. W.
van der Steen
,
Ultrasound Med. Biol.
33
,
1376
(
2007
).
17.
J. A.
Feshitan
,
C. C.
Chen
,
J. J.
Kwan
, and
M. A.
Borden
,
J. Colloid Interface Sci.
329
,
316
(
2009
).
18.
M. P.
Kok
,
T.
Segers
, and
M.
Versluis
,
Lab Chip
15
,
3716
(
2015
).
19.
T.
Segers
and
M.
Versluis
,
Lab Chip
14
,
1705
(
2014
).
20.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
,
Appl. Phys. Lett.
82
,
364
(
2003
).
21.
A. M.
Gañán-Calvo
and
J. M.
Gordillo
,
Phys. Rev. Lett.
87
,
274501
(
2001
).
22.
P.
Garstecki
,
I.
Gitlin
,
W.
DiLuzio
, and
G. M.
Whitesides
,
Appl. Phys. Lett.
85
,
2649
(
2004
).
23.
T.
Segers
,
L.
de Rond
,
N.
de Jong
,
M.
Borden
, and
M.
Versluis
,
Langmuir
32
,
3937
(
2016
).
24.
T.
Segers
,
D.
Lohse
,
M.
Versluis
, and
P.
Frinking
,
Langmuir
33
,
10329
(
2017
).
25.
M.
Borden
and
M.
Longo
,
Langmuir
18
,
9225
(
2002
).
26.
M. M.
Lozano
and
M. L.
Longo
,
Langmuir
25
,
3705
(
2009
).
27.
T.
Segers
,
A.
Lassus
,
P.
Bussat
,
E.
Gaud
, and
P.
Frinking
,
Lab Chip
19
,
158
(
2019
).
28.
E.
Talu
,
K.
Hettiarachchi
,
R. J.
Powell
,
A. P.
Lee
,
P. A.
Dayton
, and
M. L.
Longo
,
Langmuir
24
,
1745
(
2008
).
29.
T.
Segers
,
E.
Gaud
,
M.
Versluis
, and
P.
Frinking
,
Soft Matter
14
,
9550
(
2018
).
30.
M.
Kaya
,
S.
Feingold
,
K.
Hettiarachchi
,
A. P.
Lee
, and
P. A.
Dayton
,
Bubble Sci. Eng. Technol.
2
,
33
(
2010
).
31.
Y.
Gong
,
M.
Cabodi
, and
T. M.
Porter
,
Appl. Phys. Lett.
104
,
074103
(
2014
).
32.
M. A.
Parrales
,
J. M.
Fernandez
,
M.
Perez-Saborid
,
J. A.
Kopechek
, and
T. M.
Porter
,
J. Acoust. Soc. Am.
136
,
1077
(
2014
).
33.
K.
Danov
,
in
Fluid Mechanics of Surfactant and Polymer Solutions
, edited by
V.
Starov
and
I.
Ivanov
(
Springer-Verlag
,
Wien
,
2004
), Chap. 1.
34.
The surface area of the bubbles downstream in the outlet channel 4πRds2 was only 10% lower than that at a pinch of 4πRi2, whereas during the full stabilization process, the surface area 4πRi2 decreases by (Ri/Rf)2× 100% = 480%. Therefore, σdsσi.
35.
J.-M.
Hyvelin
,
E.
Gaud
,
M.
Costa
,
A.
Helbert
,
P.
Bussat
,
T.
Bettinger
, and
P.
Frinking
,
J. Ultrasound Med.
36
,
941
(
2017
).
36.
A.
Kabalnov
,
D.
Klein
,
T.
Pelura
,
E.
Schutt
, and
J.
Weers
,
Ultrasound Med. Biol.
24
,
739
(
1998
).
37.
K.
Sarkar
,
A.
Katiyar
, and
P.
Jain
,
Ultrasound Med. Biol.
35
,
1385
(
2009
).
38.
S.
Shim
,
J.
Wan
,
S.
Hilgenfeldt
,
P. D.
Panchal
, and
H. A.
Stone
,
Lab Chip
14
,
2428
(
2014
).
You do not currently have access to this content.