We compare the effectiveness of in situ thermal cleaning with that of Al-assisted cleaning of native surface oxides of bulk AlN for homoepitaxial growth by molecular beam epitaxy. Thermal deoxidation performed at 1450°C in vacuum results in voids in the AlN substrate. On the other hand, Al-assisted deoxidation at 900°C results in high-quality AlN homoepitaxy, evidenced by clean and wide atomic terraces on the surface and no extended defects at the growth interface. This study shows that Al-assisted in situ deoxidation is effective in removing native oxides on AlN, providing a clean surface to enable homoepitaxial growth of AlN and its heterostructures; furthermore, it is more attractive over thermal deoxidation, which needs to be conducted at much higher temperatures due to the strong bonding strength of native oxides on AlN.

1.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
,
Nature
441
,
325
(
2006
).
2.
H.
Okumura
,
S.
Suihkonen
,
J.
Lemettinen
,
A.
Uedono
,
Y.
Zhang
,
D.
Piedra
, and
T.
Palacios
,
Jpn. J. Appl. Phys
., Part 1
57
,
04FR11
(
2018
).
3.
Z.
Ren
,
Q.
Sun
,
S.-Y.
Kwon
,
J.
Han
,
K.
Davitt
,
Y.
Song
,
A.
Nurmikko
,
H.-K.
Cho
,
W.
Liu
,
J.
Smart
 et al.,
Appl. Phys. Lett.
91
,
051116
(
2007
).
4.
Z.
Ren
,
Q.
Sun
,
S.-Y.
Kwon
,
J.
Han
,
K.
Davitt
,
Y.
Song
,
A.
Nurmikko
,
W.
Liu
,
J.
Smart
, and
L.
Schowalter
,
Phys. Status Solidi C
4
,
2482
(
2007
).
5.
R.
Collazo
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
R.
Dalmau
, and
Z.
Sitar
,
Phys. Status Solidi C
8
,
2031
(
2011
).
6.
M.
Qi
,
G.
Li
,
S.
Ganguly
,
P.
Zhao
,
X.
Yan
,
J.
Verma
,
B.
Song
,
M.
Zhu
,
K.
Nomoto
,
H.
Xing
 et al.,
Appl. Phys. Lett.
110
,
063501
(
2017
).
7.
A.
Hickman
,
R.
Chaudhuri
,
S. J.
Bader
,
K.
Nomoto
,
K.
Lee
,
H. G.
Xing
, and
D.
Jena
,
IEEE Electron Device Lett.
40
,
1293
(
2019
).
8.
G.
Koblmueller
,
R.
Averbeck
,
L.
Geelhaar
,
H.
Riechert
,
W.
Hösler
, and
P.
Pongratz
,
J. Appl. Phys.
93
,
9591
(
2003
).
10.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
,
Appl. Phys. Express
12
,
124003
(
2019
).
11.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
,
Science
327
,
60
(
2010
).
12.
A.
Rice
,
R.
Collazo
,
J.
Tweedie
,
R.
Dalmau
,
S.
Mita
,
J.
Xie
, and
Z.
Sitar
,
J. Appl. Phys.
108
,
043510
(
2010
).
13.
J. H.
Dycus
,
K. J.
Mirrielees
,
E. D.
Grimley
,
R.
Kirste
,
S.
Mita
,
Z.
Sitar
,
R.
Collazo
,
D. L.
Irving
, and
J. M.
LeBeau
,
ACS Appl. Mater. Interfaces
10
,
10607
(
2018
).
14.
G.
Renaud
,
B.
Villette
,
I.
Vilfan
, and
A.
Bourret
,
Phys. Rev. Lett.
73
,
1825
(
1994
).
15.
C.
Barth
and
M.
Reichling
,
Nature
414
,
54
(
2001
).
16.
R.
Page
,
J.
Casamento
,
Y.-J.
Cho
,
S.
Rouvimov
,
H. G.
Xing
, and
D.
Jena
,
Phys. Rev. Mater.
3
,
064001
(
2019
).
17.
Y.-J.
Cho
,
A.
Summerfield
,
A.
Davies
,
T. S.
Cheng
,
E. F.
Smith
,
C. J.
Mellor
,
A. N.
Khlobystov
,
C. T.
Foxon
,
L.
Eaves
,
P. H.
Beton
, and
S.
Novikov
,
Sci. Rep.
6
,
34474
(
2016
).
18.
19.
Z.
Wasilewski
,
J.-M.
Baribeau
,
M.
Beaulieu
,
X.
Wu
, and
G.
Sproule
,
J. Vac. Sci. Technol., B
22
,
1534
(
2004
).
20.
L.
Li
,
E.
Linfield
,
R.
Sharma
, and
A.
Davies
,
Appl. Phys. Lett.
99
,
061910
(
2011
).
21.
T.
Xia
,
Y.-J.
Cho
,
M.
Cotrufo
,
I.
Agafonov
,
F.
Van Otten
, and
A.
Fiore
,
Semicond. Sci. Technol.
30
,
055009
(
2015
).
22.
V.
Laurent
,
D.
Chatain
,
C.
Chatillon
, and
N.
Eustathopoulos
,
Acta Metall.
36
,
1797
(
1988
).
23.
N.
Eustathopoulos
,
M. G.
Nicholas
, and
B.
Drevet
,
Wettability at High Temperatures
(
Elsevier
,
1999
), Vol.
3
.
24.
S. G.
Mueller
,
R. T.
Bondokov
,
K. E.
Morgan
,
G. A.
Slack
,
S. B.
Schujman
,
J.
Grandusky
,
J. A.
Smart
, and
L. J.
Schowalter
,
Phys. Status Solidi A
206
,
1153
(
2009
).
25.
L. I.
Berger
,
Semiconductor Materials
(
CRC Press
,
1996
), p.
123
.
26.
A. Y.
Cho
,
J. Cryst. Growth
201–202
,
1
(
1999
).
27.
T.
Van Buuren
,
M.
Weilmeier
,
I.
Athwal
,
K.
Colbow
,
J.
Mackenzie
,
T.
Tiedje
,
P.
Wong
, and
K.
Mitchell
,
Appl. Phys. Lett.
59
,
464
(
1991
).
28.
C.
Adelmann
,
J.
Brault
,
D.
Jalabert
,
P.
Gentile
,
H.
Mariette
,
G.
Mula
, and
B.
Daudin
,
J. Appl. Phys.
91
,
9638
(
2002
).
29.
C.
Adelmann
,
J.
Brault
,
G.
Mula
,
B.
Daudin
,
L.
Lymperakis
, and
J.
Neugebauer
,
Phys. Rev. B
67
,
165419
(
2003
).
30.
O.
Brandt
,
Y. J.
Sun
,
L.
Däweritz
, and
K. H.
Ploog
,
Phys. Rev. B
69
,
165326
(
2004
).
31.
C.
Lee
,
Y.
Dong
,
R. M.
Feenstra
,
J. E.
Northrup
, and
J.
Neugebauer
,
Phys. Rev. B
68
,
205317
(
2003
).
32.
M. D.
Brubaker
,
S. M.
Duff
,
T. E.
Harvey
,
P. T.
Blanchard
,
A.
Roshko
,
A. W.
Sanders
,
N. A.
Sanford
, and
K. A.
Bertness
,
Cryst. Growth Des.
16
,
596
(
2016
).
33.
A.
Smith
,
d. R.
Feenstra
,
D.
Greve
,
M.-S.
Shin
,
M.
Skowronski
,
J.
Neugebauer
, and
J.
Northrup
,
Appl. Phys. Lett.
72
,
2114
(
1998
).
34.
A.
Meldrum
,
S.
Honda
,
C.
White
,
R.
Zuhr
, and
L.
Boatner
,
J. Mater. Res.
16
,
2670
(
2001
).
35.
J.
Ben
,
X.
Sun
,
Y.
Jia
,
K.
Jiang
,
Z.
Shi
,
H.
Liu
,
Y.
Wang
,
C.
Kai
,
Y.
Wu
, and
D.
Li
,
CrystEngComm
20
,
4623
(
2018
).
36.
P.
Mazzolini
,
P.
Vogt
,
R.
Schewski
,
C.
Wouters
,
M.
Albrecht
, and
O.
Bierwagen
,
APL Mater
7
,
022511
(
2019
).
37.
M.
Binnewies
and
E.
Milke
,
Thermochemical Data of Elements and Compounds
(
Wiley-VCH
,
1999
).

Supplementary Material

You do not currently have access to this content.