Two-dimensional multiferroic materials with controllable ferromagnetism and ferroelasticity are an interesting topic and offer unprecedent opportunities for achieving long-sought controllable spintronic devices. However, the reported proposals on hypothetical materials are rarely realized experimentally so far. We perform first-principles calculations to find that the non-dispersive nature of the valence band maximum with a Mexican-hat-like band in monolayer α-PbO can be as a prototype to realize either ferromagnetism or ferroelasticity under p-type doping. Remarkably, a multiferroic phase coexisting with ferromagnetism and ferroelasticity can be obtained for hole densities in the range of 1.22–3.48 × 1014 cm−2. Also, the Curie temperature, structural stability, and exfoliation energy of α-PbO are discussed. These interesting mechanical, electronic, and magnetic properties in α-PbO provide an ideal platform to research physics and high-performance multi-functional devices.

1.
J.
Ăkerman
,
Science
308
(
5721
),
508
510
(
2005
).
2.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
(
4
),
1083
(
2005
).
3.
C. W.
Zhang
and
S. S.
Yan
,
Appl. Phys. Lett.
95
(
23
),
232108
(
2009
).
4.
H.
Wang
and
X.
Qian
,
2D Mater.
4
,
015042
(
2017
).
5.
E.
Salje
,
Annu. Rev. Mater. Res.
42
,
265
283
(
2012
).
6.
B.
Poquette
,
T.
Asare
,
J.
Schultz
,
D.
Brown
, and
S.
Kampe
,
Metall. Mater. Trans. A
42
,
2833
2842
(
2011
).
7.
B.
Xu
,
H.
Xiang
,
J.
Yin
,
Y.
Xia
, and
Z. A.
Liu
,
Nanoscale
10
,
215
221
(
2018
).
8.
S. H.
Zhang
and
B. G.
Liu
,
Nanoscale
10
,
5990
5996
(
2018
).
9.
H.
Wang
,
X.
Li
,
J.
Sun
,
Z.
Liu
, and
J.
Yang
,
2D Mater.
4
,
045020
(
2017
).
10.
X. L.
Xu
,
Y. D.
Ma
,
B. B.
Huang
, and
Y.
Dai
,
Phys. Chem. Chem. Phys.
21
,
7440
7446
(
2019
).
11.
Y.
Ma
,
L.
Kou
,
B.
Huang
,
Y.
Dai
, and
T.
Heine
,
Phys. Rev. B
98
(
8
),
085420
(
2018
).
12.
L.
Kou
,
Y.
Ma
,
C.
Tang
,
Z.
Sun
,
A.
Du
, and
C.
Chen
,
Nano Lett.
16
(
12
),
7910
7914
(
2016
).
13.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
, and
E.
Schmidgall
,
Nature
546
(
7657
),
270
(
2017
).
14.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
, and
Y.
Wang
,
Nature
546
(
7657
),
265
(
2017
).
15.
H. L.
Zhuang
,
P. R. C.
Kent
, and
R. G.
Hennig
,
Phys. Rev. B
93
(
13
),
134407
(
2016
).
16.
L.
Zhang
,
S. F.
Zhang
,
W. X.
Ji
,
C. W.
Zhang
,
P.
Li
,
P. J.
Wang
,
S. S.
Li
, and
S. S.
Yan
,
Nanoscale
10
,
20748
(
2018
).
17.
M. H.
Zhang
,
C. W.
Zhang
,
P. J.
Wang
, and
S. S.
Li
,
Nanoscale
10
,
20226
(
2018
).
18.
Y. P.
Wang
,
W. X.
Ji
,
C. W.
Zhang
,
P.
Li
,
P. J.
Wang
,
B.
Kong
,
S. S.
Li
,
S. S.
Yan
, and
K.
Liang
,
Appl. Phys. Lett.
110
,
233107
(
2017
).
19.
T.
Cao
,
Z.
Li
, and
S. G.
Louie
,
Phys. Rev. Lett.
114
(
23
),
236602
(
2015
).
20.
L.
Seixas
,
A.
Rodin
,
A.
Carvalho
, and
A. C.
Neto
,
Phys. Rev. Lett.
116
,
206803
(
2016
).
21.
Y.
Gao
,
M.
Wu
, and
X. C.
Zeng
,
Nanoscale Horiz.
4
,
1106
1112
(
2019
).
22.
C.
Zhang
,
Y.
Nie
,
S.
Sanvito
, and
A.
Du
,
Nano Lett.
19
,
1366
1370
(
2019
).
23.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem, J. Chem. Phys.
121
,
1187
(
2004
).
28.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
,
R. L.
Martin
, and
J.
Chem
,
Phys. Rev. Lett.
123
,
174101
(
2005
).
29.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
(
2015
).
30.
A. A.
Mostofi
,
J. R.
Yates
,
Y. S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
,
Phys. Commun.
178
,
685
(
2008
).
31.
S. J.
Zhang
,
C. W.
Zhang
,
S. F.
Zhang
,
W. X.
Ji
,
P.
Li
,
P. J.
Wang
,
S. S.
Li
, and
S. S.
Yan
,
Phys. Rev. B
96
,
205433
(
2017
).
32.
G.
Trinquier
and
R.
Hoffmann
,
J. Phys. Chem.
88
(
26
),
6696
6711
(
1984
).
33.
P.
Kumar
,
J.
Liu
,
P.
Ranjan
,
Y.
Hu
,
S. S. R. K. C.
Yamijala
,
S. K.
Pati
,
J.
Irudayaraj
, and
G. J.
Cheng
,
Small
14
,
1703346
(
2018
).
34.
K. J.
Saji
,
K.
Tian
,
M.
Snure
, and
A.
Tiwari
,
Adv. Electron. Mater.
2
,
1500453
(
2016
).
35.
D. K.
Efetov
and
P.
Kim
,
Phys. Rev. Lett.
105
,
256805
(
2010
).
36.
J.
Ye
,
M. F.
Craciun
,
M.
Koshino
,
S.
Russo
,
S.
Inoue
,
H.
Yuan
,
H.
Shimotani
,
A. F.
Morpurgo
, and
Y.
Iwasa
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
13002
(
2011
).
37.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
1136
(
1966
).
38.
J.
Qi
,
H.
Wang
, and
X.
Qian
, preprint arXiv:1811.02674 (
2018
).
39.
A. N.
Ma
,
P. J.
Wang
, and
C. W.
Zhang
,
Nanoscale
12
,
5464
(
2020
).
40.
W.
Wang
,
S.
Dai
,
X.
Li
,
J.
Yang
,
D. J.
Srolovitz
, and
Q.
Zheng
,
Nat. Commun.
6
,
7853
(
2015
).
41.
T.
Björkman
,
A.
Gulans
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
108
,
235502
(
2012
).
42.
F.
Li
,
X.
Liu
,
Y.
Wang
, and
Y.
Li
,
J. Mater. Chem. C.
4
,
2155
(
2016
).
43.
M.
Qiao
,
J.
Liu
,
Y.
Wang
,
Y.
Li
, and
Z.
Chen
,
J. Am. Chem. Soc.
140
,
12256
12262
(
2018
).
44.
Y.
Wang
,
M.
Qiao
,
Y.
Li
, and
Z.
Chen
,
Nanoscale Horiz.
3
,
327
334
(
2018
).
45.
R. C.
Andrew
,
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
,
Phys. Rev. B
85
,
125428
(
2012
).
46.
K. H.
Michel
and
B.
Verberck
,
Phys. Rev. B
80
,
224301
(
2009
).
47.
Z.
Gao
,
X.
Dong
,
N.
Li
, and
J.
Ren
,
Nano Lett.
17
,
772
(
2017
).

Supplementary Material

You do not currently have access to this content.