We demonstrate a portable all-optical intrinsic scalar magnetic gradiometer composed of miniaturized cesium vapor cells and vertical-cavity surface-emitting lasers (VCSELs). Two cells, with inner dimensions of 5 mm × 5 mm × 5 mm and separated by a baseline of 5 cm, are driven by one VCSEL, and the resulting Larmor precessions are probed by a second VCSEL through optical rotation. The off-resonant linearly polarized probe light interrogates two cells at the same time, and the output of the intrinsic gradiometer is proportional to the magnetic field gradient measured over the given baseline. This intrinsic gradiometer scheme has the advantage of avoiding added noise from combining two scalar magnetometers. We achieve a sensitivity better than 18 fT/cm/√Hz in the gradient measurement. Ultra-sensitive short-baseline magnetic gradiometers can potentially play an important role in many practical applications, such as nondestructive evaluation and unexploded ordnance detection. Another application of the gradiometer is for magnetocardiography (MCG) in an unshielded environment. Real-time MCG signals can be extracted from the raw gradiometer readings. The demonstrated gradiometer greatly simplifies the MCG setup and may lead to a ubiquitous MCG measurement in the future.

1.
J. C.
Allred
,
R. N.
Lyman
,
T. W.
Kornack
, and
M. V.
Romalis
, “
High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
,”
Phys. Rev. Lett.
89
,
130801
(
2002
).
2.
I. K.
Kominis
,
T. W.
Kornack
,
J. C.
Allred
, and
M. V.
Romalis
, “
A subfemtotesla multichannel atomic magnetometer
,”
Nature
422
,
596
599
(
2003
).
3.
H. B.
Dang
,
A. C.
Maloof
, and
M. V.
Romalis
, “
Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer
,”
Appl. Phys. Lett.
97
(
15
),
151110
(
2010
).
4.
P. D. D.
Schwindt
,
S.
Knappe
,
V.
Shah
,
L.
Hollberg
, and
J.
Kitching
, “
Chip-scale atomic magnetometer
,”
Appl. Phys. Lett.
85
(
26
),
6409
(
2004
).
5.
P. D. D.
Schwindt
,
B.
Lindseth
,
S.
Knappe
,
V.
Shah
, and
J.
Kitching
, “
Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique
,”
Appl. Phys. Lett.
90
(
8
),
081102
(
2007
).
6.
R.
Mhaskar
,
S.
Knappe
, and
J.
Kitching
, “
A low-power, high-sensitivity micromachined optical magnetometer
,”
Appl. Phys. Lett.
101
(
24
),
241105
(
2012
).
7.
S.
Knappe
,
O.
Alem
,
D.
Sheng
, and
J.
Kitching
, “
Microfabricated optically-pumped magnetometers for biomagnetic applications
,”
J. Phys.: Conf. Ser.
723
,
012055
(
2016
).
8.
J.
Kitching
, “
Chip-scale atomic devices
,”
Appl. Phys. Rev.
5
,
031302
(
2018
).
9.
R.
Zhang
,
T.
Dyer
,
N.
Brockie
,
R.
Parsa
, and
R.
Mhaskar
, “
Subpicotesla scalar atomic magnetometer with a microfabricated cell
,”
J. Appl. Phys.
126
(
12
),
124503
(
2019
).
10.
S. J.
Smullin
,
I. M.
Savukov
,
G.
Vasilakis
,
R. K.
Ghosh
, and
M. V.
Romalis
, “
Low-noise high-density alkali-metal scalar magnetometer
,”
Phys. Rev. A
80
(
3
),
033420
(
2009
).
11.
D.
Sheng
,
S.
Li
,
N.
Dural
, and
M. V.
Romalis
, “
Subfemtotesla scalar atomic magnetometry using multipass cells
,”
Phys. Rev. Lett.
110
(
16
),
160802
(
2013
).
12.
C.
Affolderbach
,
M.
Stahler
,
S.
Knappe
, and
R.
Wynands
, “
An all-optical, high-sensitivity magnetic gradiometer
,”
Appl. Phys. B
75
,
605
(
2002
).
13.
R.
Zhang
,
K.
Smith
, and
R.
Mhaskar
, “
Highly sensitive miniature scalar optical gradiometer
,” in
IEEE Sensors
(
2016
), pp.
1
3
.
14.
G.
Bevilacqua
,
V.
Biancalana
,
P.
Chessa
, and
Y.
Dancheva
, “
Multichannel optical atomic magnetometer operating in unshielded environment
,”
Appl. Phys. B
122
,
103
(
2016
).
15.
V. G.
Lucivero
,
W.
Lee
,
M. E.
Limes
,
E. L.
Foley
,
T. W.
Kornack
, and
M. V.
Romalis
, “
A femtotesla quantum-noise-limited pulsed gradiometer at finite fields
,” in
Quantum Information and Measurement
(
2019
).
16.
M. D.
Bulatowicz
,
T. G.
Walker
, and
M. S.
Larsen
, “
Pulsed-beam atomic magnetometer system
,” U.S. Patent 20180372813A1 (27 December
2018
).
17.
M. E.
Limes
,
E. L.
Foley
,
T. W.
Kornack
,
S.
Caliga
,
S.
McBride
,
A.
Braun
,
W.
Lee
,
V. G.
Lucivero
, and
M. V.
Romalis
, “
Total-field atomic gradiometer for unshielded portable magnetoencephalography
,” arXiv:2001.03534 (
2020
).
18.
K.
Kamada
,
Y.
Ito
,
S.
Ichihara
,
N.
Mizutani
, and
T.
Kobayashi
, “
Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations
,”
Opt. Express
23
,
6976
(
2015
).
19.
S.-K.
Lee
and
M. V.
Romalis
, “
Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry
,”
J. Appl. Phys.
103
,
084904
(
2008
).
20.
Y.
Watanabe
,
S. H.
Kang
,
J. W.
Chan
,
J. W.
Morris
,
T. J.
Shaw
, and
J.
Clarke
, “
Observation of magnetic gradients in stainless steel with a high-Tc superconducting quantum interference device microscope
,”
J. Appl. Phys.
89
,
1977
(
2001
).
21.
A.
Salem
,
T.
Hamada
,
J. K.
Asahina
, and
K.
Ushijima
, “
Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data
,”
Explor. Geophys.
36
,
97
103
(
2005
).
22.
G.
Bison
,
R.
Wynands
, and
A.
Weis
, “
A laser-pumped magnetometer for the mapping of human cardiomagnetic fields
,”
Appl. Phys. B
76
(
3
),
325
(
2003
).
23.
R.
Wyllie
,
M.
Kauer
,
R. T.
Wakai
, and
T. G.
Walker
, “
Optical magnetometer array for fetal magnetocardiography
,”
Opt. Lett.
37
(
12
),
2247
(
2012
).
24.
O.
Alem
,
T. H.
Sander
,
R.
Mhaskar
,
J.
LeBlanc
,
H.
Eswaran
,
U.
Steinhoff
,
Y.
Okada
,
J.
Kitching
,
L.
Trahms
, and
S.
Knappe
, “
Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers
,”
Phys. Med. Biol.
60
,
4797
(
2015
).
25.
M.
Bai
,
Y.
Huang
,
G.
Zhang
,
W.
Zheng
,
Q.
Lin
, and
Z.
Hu
, “
Fast backward singular value decomposition (SVD) algorithm for magnetocardiographic signal reconstruction from pulsed atomic magnetometer data
,”
Opt. Express
27
(
21
),
29534
(
2019
).
You do not currently have access to this content.