Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light produces the characteristic EPR spectrum from neutral Mg acceptors (MgGa0). A portion of the singly ionized Ir4+ donors are converted to their neutral Ir3+ state at the same time. For temperatures near 250 K, the photoinduced EPR spectrum from the neutral MgGa0 acceptors begins to decay immediately after the laser light is removed, as electrons are thermally excited from the valence band to the Mg acceptor. Holes left in the valence band recombine with electrons at the deeper Ir3+ ions and restore the Ir4+ ions. An activation energy for the thermal decay of the MgGa0 acceptors, and thus a value for the (0/−) level, is obtained by using a general-order kinetics model to analyze a set of five isothermal decay curves taken at temperatures between 240 and 260 K.

1.
B. E.
Kananen
,
L. E.
Halliburton
,
E. M.
Scherrer
,
K. T.
Stevens
,
G. K.
Foundos
,
K. B.
Chang
, and
N. C.
Giles
,
Appl. Phys. Lett.
111
,
072102
(
2017
).
2.
Q. D.
Ho
,
T.
Frauenheim
, and
P.
Deák
,
J. Appl. Phys.
124
,
145702
(
2018
).
3.
D.
Skachkov
and
W. R. L.
Lambrecht
,
Appl. Phys. Lett.
114
,
202102
(
2019
).
4.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Appl. Phys. Lett.
112
,
032108
(
2018
).
5.
J. L.
Lyons
,
Semicond. Sci. Technol.
33
,
05LT02
(
2018
).
6.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
,
Appl. Phys. Lett.
113
,
052101
(
2018
).
7.
H.
Peelaers
,
J. L.
Lyons
,
J. B.
Varley
, and
C. G.
Van de Walle
,
APL Mater.
7
,
022519
(
2019
).
8.
M. J.
Tadjer
,
J. L.
Lyons
,
N.
Nepal
,
J. A.
Freitas
, Jr.
,
A. D.
Koehler
, and
G. M.
Foster
,
ECS J. Solid State Sci. Technol.
8
,
Q3187
(
2019
).
9.
T.
Gake
,
Y.
Kumagai
, and
F.
Oba
,
Phys. Rev. Mater.
3
,
044603
(
2019
).
10.
J. L.
Lyons
,
ECS J. Solid State Sci. Technol.
8
,
Q3226
(
2019
).
11.
X.
Feng
,
Z.
Li
,
W.
Mi
, and
J.
Ma
,
Vacuum
124
,
101
(
2016
).
12.
Y. P.
Qian
,
D. Y.
Guo
,
X. L.
Chu
,
H. Z.
Shi
,
W. K.
Zhu
,
K.
Wang
,
X. K.
Huang
,
H.
Wang
,
S. L.
Wang
,
P. G.
Li
,
X. H.
Zhang
, and
W. H.
Tang
,
Mater. Lett.
209
,
558
(
2017
).
13.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
, and
O.
Tsvetkova
,
Acta Phys. Pol., A
133
,
811
(
2018
).
14.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
,
N.
Moser
,
K. D.
Chabak
, and
G. H.
Jessen
,
Appl. Phys. Lett.
113
,
062101
(
2018
).
15.
M. H.
Wong
,
C.-H.
Lin
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
113
,
102103
(
2018
).
16.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
D.
Gogova
, and
A. I.
Kochkova
,
ECS J. Solid State Sci. Technol.
8
,
Q3019
(
2019
).
17.
Y.
Su
,
D.
Guo
,
J.
Ye
,
H.
Zhao
,
Z.
Wang
,
S.
Wang
,
P.
Li
, and
W.
Tang
,
J. Alloys Compd.
782
,
299
(
2019
).
18.
C. A.
Lenyk
,
T. D.
Gustafson
,
L. E.
Halliburton
, and
N. C.
Giles
,
J. Appl. Phys.
126
,
245701
(
2019
).
19.
J. D.
Blevins
,
K.
Stevens
,
A.
Lindsey
,
G.
Foundos
, and
L.
Sande
,
IEEE Trans. Semicond. Manuf.
32
,
466
(
2019
).
20.
C. A.
Lenyk
,
N. C.
Giles
,
E. M.
Scherrer
,
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
,
J. D.
Blevins
,
D. L.
Dorsey
, and
S.
Mou
,
J. Appl. Phys.
125
,
045703
(
2019
).
21.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Proc. SPIE
10533
,
105330E
(
2018
).
22.
J. B.
Varley
,
H.
Peelaers
,
A.
Janotti
, and
C. G.
Van de Walle
,
J. Phys.: Condens. Matter
23
,
334212
(
2011
).
23.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Phys. Rev. B
95
,
245202
(
2017
).
24.
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
, and
N. C.
Giles
,
Appl. Phys. Lett.
110
,
202104
(
2017
).
25.
H. J.
von Bardeleben
,
S.
Zhou
,
U.
Gerstmann
,
D.
Skachkov
,
W. R. L.
Lambrecht
,
Q. D.
Ho
, and
P.
Deák
,
APL Mater.
7
,
022521
(
2019
).
26.
D.
Skachkov
,
W. R. L.
Lambrecht
,
H. J.
von Bardeleben
,
U.
Gerstmann
,
Q. D.
Ho
, and
P.
Deák
,
J. Appl. Phys.
125
,
185701
(
2019
).
27.
Y.
Qin
,
M.
Stavola
,
W. B.
Fowler
,
P.
Weiser
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3103
(
2019
).
28.
J. M.
Johnson
,
Z.
Chen
,
J. B.
Varley
,
C. M.
Jackson
,
E.
Farzana
,
Z.
Zhang
,
A. R.
Arehart
,
H.-L.
Huang
,
A.
Genc
,
S. A.
Ringel
,
C. G.
Van de Walle
,
D. A.
Muller
, and
J.
Hwang
,
Phys. Rev. X
9
,
041027
(
2019
).
29.
N. C.
Giles
and
L. E.
Halliburton
, in
Gallium Oxide: Technology, Devices and Applications
, edited by
S.
Pearton
,
F.
Ren
, and
M.
Mastro
(
Elsevier
,
2019
), pp.
169
190
.
30.
J. R.
Ritter
,
K. G.
Lynn
, and
M. D.
McCluskey
,
J. Appl. Phys.
126
,
225705
(
2019
).
31.
S.
Bhandari
and
M. E.
Zvanut
,
J. Appl. Phys.
127
,
065704
(
2020
).
32.
B. E.
Kananen
,
N. C.
Giles
,
L. E.
Halliburton
,
G. K.
Foundos
,
K. B.
Chang
, and
K. T.
Stevens
,
J. Appl. Phys.
122
,
215703
(
2017
).
33.
A.
Ratnaparkhe
and
W. R. L.
Lambrecht
,
Appl. Phys. Lett.
110
,
132103
(
2017
).
34.
A.
Mock
,
R.
Korlacki
,
C.
Briley
,
V.
Darakchieva
,
B.
Monemar
,
Y.
Kumagai
,
K.
Goto
,
M.
Higashiwaki
, and
M.
Schubert
,
Phys. Rev. B
96
,
245205
(
2017
).
35.
S.
Bhandari
,
M. E.
Zvanut
, and
J. B.
Varley
,
J. Appl. Phys.
126
,
165703
(
2019
).
36.
S. W. S.
McKeever
,
Thermoluminescence of Solids
(
Cambridge University Press
,
Cambridge
,
1985
), Chap. 3, pp.
98
99
.
37.
C. E.
May
and
J. A.
Partridge
,
J. Chem. Phys.
40
,
1401
(
1964
).
38.
R.
Chen
,
J. Electrochem. Soc.
116
,
1254
(
1969
).
39.
S.
Yang
,
A. T.
Brant
,
N. C.
Giles
, and
L. E.
Halliburton
,
Phys. Rev. B
87
,
125201
(
2013
).
40.
E. M.
Golden
,
S. A.
Basun
,
D. R.
Evans
,
A. A.
Grabar
,
I. M.
Stoika
,
N. C.
Giles
, and
L. E.
Halliburton
,
J. Appl. Phys.
120
,
133101
(
2016
).
You do not currently have access to this content.