Acoustic tweezers are a method of using acoustic waves to manipulate small particles in medium such as water or air without touching or contaminating them. Here, we report a water-immersed phase-modulating acoustic holographic lens as kinds of acoustic tweezers. It can be used to generate single-bottle beams or even multi-bottle beams at specific locations. These types of acoustic tweezers can be used to examine single or multiple particle trapping. The concept is based on the highly localized acoustic radiation force induced by the destructive interference of the acoustic waves across the holographic lens, which makes the particles trapped in the center of the bottle beam. Because the proposed system is independent of reflection, it is suitable for studying the interaction between cells in vivo.

1.
R.
Guldiken
,
M.
Jo
,
N.
Gallant
,
U.
Demirci
, and
J.
Zhe
,
Sensors
12
,
905
(
2012
).
2.
Z.
Ma
,
D.
Collins
,
J.
Guo
, and
Y.
Ai
,
Anal. Chem.
88
,
11844
(
2016
).
3.
P.
Mishra
,
M.
Hill
, and
P.
Jones
,
Biomicrofluidics
8
,
034109
(
2014
).
4.
Y.
Zhang
,
Z.
Liu
,
J.
Yang
, and
L.
Yuan
,
Opt. Commun.
285
,
4068
(
2012
).
5.
A.
Ashkin
,
Phys. Rev. Lett.
24
,
156
(
1970
).
6.
D.
Fan
,
F.
Zhu
,
R.
Cammarata
, and
C.
Chien
,
Nano Today
6
,
339
(
2011
).
7.
B.
Edwards
,
N.
Engheta
, and
S.
Evoy
,
J. Appl. Phys.
102
,
024913
(
2007
).
8.
C.
Gosse
and
V.
Croquette
,
Biophys. J.
82
,
3314
(
2002
).
9.
V.
Bessalova
,
N.
Perov
, and
V.
Rodionova
,
J. Magn. Magn. Mater.
415
,
66
(
2016
).
10.
L.
King
,
Proc. R. Soc. London
147
,
212
(
1934
).
11.
F.
Petersson
,
A.
Nilsson
,
C.
Holm
,
H.
Jönsson
, and
T.
Laurell
,
Lab Chip
5
,
20
(
2005
).
12.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
,
Chem. Soc. Rev.
36
,
492
(
2007
).
13.
L.
Meng
,
F.
Cai
,
J.
Chen
,
L.
Niu
,
Y.
Li
,
J.
Wu
, and
H.
Zheng
,
Appl. Phys. Lett.
100
,
173701
(
2012
).
14.
D.
Ahmed
,
A.
Ozcelik
,
N.
Bojanala
,
N.
Nama
,
A.
Upadhyay
,
Y.
Chen
,
W.
Hanna-Rose
, and
T.
Huang
,
Nat. Commun.
7
,
11085
(
2016
).
15.
C.
Courtney
,
C.
Demore
,
H.
Wu
,
A.
Grinenko
,
P.
Wilcox
,
S.
Cochran
, and
B.
Drinkwater
,
Appl. Phys. Lett.
104
,
154103
(
2014
).
16.
T.
Hoshi
,
Y.
Ochiai
, and
J.
Rekimoto
,
Jpn. J. Appl. Phys., Part 1
53
,
07KE07
(
2014
).
17.
Q.
Zhou
,
J.
Zhang
,
Z.
Xu
, and
X.
Liu
,
J. Phys. D: Appl. Phys.
52
,
455302
(
2019
).
18.
P.
Zhang
,
T.
Li
,
J.
Zhu
,
X.
Zhu
,
S.
Yang
,
Y.
Wang
,
X.
Yin
, and
X.
Zhang
,
Nat. Commun.
5
,
4316
(
2014
).
19.
D.
Baresch
,
J.
Thomas
, and
R.
Marchiano
,
Phys. Rev. Lett.
116
,
024301
(
2016
).
20.
K.
Melde
,
A.
Mark
,
T.
Qiu
, and
P.
Fischer
,
Nature
537
,
518
(
2016
).
21.
A.
Franklin
,
A.
Marzo
,
R.
Malkin
, and
B.
Drinkwater
,
Appl. Phys. Lett.
111
,
094101
(
2017
).
22.
A.
Marzo
,
S.
Seah
,
B.
Drinkwater
,
D.
Sahoo
,
B.
Long
, and
S.
Subramanian
,
Nat. Commun.
6
,
8661
(
2015
).
23.
L.
Cox
,
A.
Croxford
,
B.
Drinkwater
, and
A.
Marzo
,
Appl. Phys. Lett.
113
,
054101
(
2018
).
24.
L.
Cox
,
K.
Melde
,
A.
Croxford
,
P.
Fischer
, and
B.
Drinkwater
,
Phys. Rev. Appl.
12
,
064055
(
2019
).
25.
A.
Marzo
,
A.
Ghobrial
,
L.
Cox
,
M.
Caleap
,
A.
Croxford
, and
B.
Drinkwater
,
Appl. Phys. Lett.
110
,
014102
(
2017
).
26.
J.
Karlsen
and
H.
Bruus
,
Phys. Rev. E
92
,
043010
(
2015
).
27.
Z.
Xu
,
M.
Qian
,
Q.
Cheng
, and
X.
Liu
,
Chin. Phys. Lett.
33
,
114302
(
2016
).
28.
Q.
Zhou
,
Z.
Xu
, and
X.
Liu
,
J. Phys. D Appl. Phys.
53
,
065302
(
2020
).
29.
Z.
Xu
,
H.
Chen
,
X.
Yan
,
M.
Qian
, and
Q.
Cheng
,
Opt. Express
25
,
20401
(
2017
).
30.
Z.
Xu
,
H.
Chen
,
X.
Yan
,
M.
Qian
, and
Q.
Cheng
,
J. Acoust. Soc. Am.
142
,
82
(
2017
).

Supplementary Material

You do not currently have access to this content.