Progress in electromagnetic induction imaging with atomic magnetometers has brought its domain to the edge of the regime useful for biomedical imaging. However, a demonstration of imaging below the required 1 Sm−1 level is still missing. In this Letter, we use an 87Rb radio frequency atomic magnetometer operating near room temperature in an unshielded environment to image calibrated solutions mimicking the electric conductivity of live tissues. By combining the recently introduced near-resonant imaging technique with a dual radio frequency coil excitation scheme, we image 5ml of solutions down to 0.9 Sm−1. We measure a signal-to-noise ratio of 2.7 at 2 MHz for 0.9 Sm−1, increased up to 7.2 with offline averaging. Our work is an improvement of 50 times on previous imaging results and demonstrates the sensitivity and stability in unshielded environments required for imaging biological tissues, in particular for the human heart.

1.
D.
Budker
and
M.
Romalis
, “
Optical magnetometry
,”
Nat. Phys.
3
,
227EP
(
2007
).
2.
J.
Belfi
,
G.
Bevilacqua
,
V.
Biancalana
,
S.
Cartaleva
,
Y.
Dancheva
, and
L.
Moi
, “
Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment
,”
J. Opt. Soc. Am., B
24
,
2357
2362
(
2007
).
3.
G.
Bison
,
N.
Castagna
,
A.
Hofer
,
P.
Knowles
,
J.-L.
Schenker
,
M.
Kasprzak
,
H.
Saudan
, and
A.
Weis
, “
A room temperature 19-channel magnetic field mapping device for cardiac signals
,”
Appl. Phys. Lett.
95
,
173701
(
2009
).
4.
V. K.
Shah
and
R. T.
Wakai
, “
A compact, high performance atomic magnetometer for biomedical applications
,”
Phys. Med. Biol.
58
,
8153
8161
(
2013
).
5.
K.
Jensen
,
M. A.
Skarsfeldt
,
H.
Stærkind
,
J.
Arnbak
,
M. V.
Balabas
,
S.-P.
Olesen
,
B. H.
Bentzen
, and
E. S.
Polzik
, “
Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer
,”
Sci. Rep.
8
,
16218
(
2018
).
6.
H.
Xia
,
A.
Ben-Amar Baranga
,
D.
Hoffman
, and
M. V.
Romalis
, “
Magnetoencephalography with an atomic magnetometer
,”
Appl. Phys. Lett.
89
,
211104
(
2006
).
7.
E.
Boto
,
N.
Holmes
,
J.
Leggett
,
G.
Roberts
,
V.
Shah
,
S. S.
Meyer
,
L. D.
Muñoz
,
K. J.
Mullinger
,
T. M.
Tierney
,
S.
Bestmann
,
G. R.
Barnes
,
R.
Bowtell
, and
M. J.
Brookes
, “
Moving magnetoencephalography towards real-world applications with a wearable system
,”
Nature
555
,
657
661
(
2018
).
8.
G. Z.
Iwata
,
Y.
Hu
,
T.
Sander
,
M.
Muthuraman
,
V. C.
Chirumamilla
,
S.
Groppa
,
D.
Budker
, and
A.
Wickenbrock
, “
Biomagnetic signals recorded during transcranial magnetic stimulation (TMS)-evoked peripheral muscular activity
,” arXiv:1909.11451 (
2019
).
9.
L.
Marmugi
and
F.
Renzoni
, “
Optical magnetic induction tomography of the heart
,”
Sci. Rep.
6
,
23962EP
(
2016
).
10.
S. M.
Narayan
,
D. E.
Krummen
,
M. W.
Enyeart
, and
W.-J.
Rappel
, “
Computational mapping identifies localized mechanisms for ablation of atrial fibrillation
,”
PLoS One
7
,
e46034
(
2012
).
11.
H.
Griffiths
, “
Magnetic induction tomography
,”
Meas. Sci. Technol.
12
,
1126
(
2001
).
12.
H.
Griffiths
,
W. R.
Stewart
, and
W.
Gough
, “
Magnetic induction tomography: A measuring system for biological tissues
,”
Ann. N. Y. Acad. Sci.
873
,
335
345
(
1999
).
13.
R.
Merwa
,
K.
Hollaus
,
O.
Biró
, and
H.
Scharfetter
, “
Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability
,”
Physiol. Meas.
25
,
347
354
(
2004
).
14.
M.
Zolgharni
,
H.
Griffiths
, and
P. D.
Ledger
, “
Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: Numerical modelling
,”
Physiol. Meas.
31
,
S111
S125
(
2010
).
15.
W.
Pan
,
Q.
Yan
,
M.
Qin
,
G.
Jin
,
J.
Sun
,
X.
Ning
,
W.
Zhuang
,
B.
Peng
, and
G.
Li
, “
Detection of cerebral hemorrhage in rabbits by time-difference magnetic inductive phase shift spectroscopy
,”
PLoS One
10
,
1
14
(
2015
).
16.
H.
Griffiths
,
W.
Gough
,
S.
Watson
, and
R. J.
Williams
, “
Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography
,”
Physiol. Meas.
28
,
S301
(
2007
).
17.
A.
Wickenbrock
,
S.
Jurgilas
,
A.
Dow
,
L.
Marmugi
, and
F.
Renzoni
, “
Magnetic induction tomography using an all-optical 87Rb atomic magnetometer
,”
Opt. Lett.
39
,
6367
6370
(
2014
).
18.
C.
Deans
,
L.
Marmugi
,
S.
Hussain
, and
F.
Renzoni
, “
Electromagnetic induction imaging with a radio-frequency atomic magnetometer
,”
Appl. Phys. Lett.
108
,
103503
(
2016
).
19.
A.
Wickenbrock
,
N.
Leefer
,
J. W.
Blanchard
, and
D.
Budker
, “
Eddy current imaging with an atomic radio-frequency magnetometer
,”
Appl. Phys. Lett.
108
,
183507
(
2016
).
20.
L.
Marmugi
,
C.
Deans
, and
F.
Renzoni
, “
Electromagnetic induction imaging with atomic magnetometers: Unlocking the low-conductivity regime
,”
Appl. Phys. Lett.
115
,
083503
(
2019
).
21.
K.
Jensen
,
M.
Zugenmaier
,
J.
Arnbak
,
H.
Stærkind
,
M. V.
Balabas
, and
E. S.
Polzik
, “
Detection of low-conductivity objects using eddy current measurements with an optical magnetometer
,”
Phys. Rev. Res.
1
,
033087
(
2019
).
22.
S.
Gabriel
,
R. W.
Lau
, and
C.
Gabriel
, “
The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues
,”
Phys. Med. Biol.
41
,
2271
2293
(
1996
).
23.
T. J. C.
Faes
,
H. A.
van der Meij
,
J. C.
de Munck
, and
R. M.
Heethaar
, “
The electric resistivity of human tissues (100 Hz-10 MHz): A meta-analysis of review studies
,”
Physiol. Meas.
20
,
R1
R10
(
1999
).
24.
C.
Deans
,
L.
Marmugi
, and
F.
Renzoni
, “
Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments
,”
Rev. Sci. Instrum.
89
,
083111
(
2018
).
25.
P.
Bevington
,
R.
Gartman
, and
W.
Chalupczak
, “
Imaging of material defects with a radio-frequency atomic magnetometer
,”
Rev. Sci. Instrum.
90
,
013103
(
2019
).
26.
P.
Bevington
,
R.
Gartman
, and
W.
Chalupczak
, “
Enhanced material defect imaging with a radio-frequency atomic magnetometer
,”
J. Appl. Phys.
125
,
094503
(
2019
).
27.
S.
Watson
,
A.
Morris
,
R. J.
Williams
,
H.
Griffiths
, and
W.
Gough
, “
A primary field compensation scheme for planar array magnetic induction tomography
,”
Physiol. Meas.
25
,
271
279
(
2004
).
28.
P.
Bevington
,
R.
Gartman
, and
W.
Chalupczak
, “
Alkali-metal spin maser for non-destructive tests
,”
Appl. Phys. Lett.
115
,
173502
(
2019
).
29.
M. A.
Khan
,
E. Y.
Yang
,
Y.
Zhan
,
R. M.
Judd
,
W.
Chan
,
F.
Nabi
,
J. F.
Heitner
,
R. J.
Kim
,
I.
Klem
,
S. F.
Nagueh
, and
D. J.
Shah
, “
Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: A multicenter study
,”
J. Cardiovasc. Magn. Reson.
21
,
4
(
2019
).
30.
C.
Deans
,
L.
Marmugi
,
S.
Hussain
, and
F.
Renzoni
, “
Optical atomic magnetometry for magnetic induction tomography of the heart
,”
Proc. SPIE
9900
,
99000F
(
2016
).
31.
C.
Deans
,
L. D.
Griffin
,
L.
Marmugi
, and
F.
Renzoni
, “
Machine learning based localization and classification with atomic magnetometers
,”
Phys. Rev. Lett.
120
,
033204
(
2018
).
32.
G.
Chatzidrosos
,
A.
Wickenbrock
,
L.
Bougas
,
H.
Zheng
,
O.
Tretiak
,
Y.
Yang
, and
D.
Budker
, “
Eddy-current imaging with nitrogen-vacancy centers in diamond
,”
Phys. Rev. Appl.
11
,
014060
(
2019
).
You do not currently have access to this content.