This paper reports on a platform for monolithic integration of piezoelectric and piezoresistive devices on a single chip using the ScAlN/3C-SiC/Si heterostructure. Surface acoustic wave devices with an electromechanical coupling of 3.2% and an out-of-band rejection as high as 18 dB are demonstrated using the excellent piezoelectric properties of ScAlN and low acoustic loss of 3C-SiC. Additionally, a large piezoresistive effect in the low-doped n-type 3C-SiC(100) thin film has been observed, which exceeds the previously reported values in any SiC thin films. The growth of the n-type 3C-SiC thin film was performed using the low pressure chemical vapor deposition technique at 1250 °C and the standard micro-electro-mechanical systems process is used for the fabrication of 3C-SiC piezoresistors. The piezoresistive effect was measured using the bending beam method in different crystallographic orientations. The maximum gauge factor is –47 for the longitudinal [100] orientation. Using the longitudinal and transverse gauge factors for different crystallographic orientations, the fundamental piezoresistive coefficients of the low-doped n-type 3C-SiC thin film are measured to be π11=(14.5±1.3)×10 11 Pa−1, π12=(5.5±0.5)×10 11 Pa−1, and π44=(1.7±0.7)×10 11 Pa−1.

1.
K.
Totsu
,
M.
Moriyama
, and
M.
Esashi
,
Nat. Electron.
2
,
134
136
(
2019
).
2.
X. L.
Feng
,
C. J.
White
,
A.
Hajimiri
, and
M. L.
Roukes
,
Nat. Nanotechnol.
3
(
6
),
342
346
(
2008
).
3.
D. S.
Breed
, “
Inertial measurement unit for aircraft
,” U.S. patent 7962285 (26 June
2008
).
4.
M. A.
Feki
,
F.
Kawsar
,
M.
Boussard
, and
L.
Trappeniers
,
Computer
46
(
2
),
24
25
(
2013
).
5.
M. M.
Izaguirre
,
C. A.
Mazza
,
M.
Biondini
,
T. T.
Baldwin
, and
C. L.
Ballare
,
Proc. Natl. Acad. Sci.
103
(
18
),
1170
7174
(
2006
).
6.
V.
Balakrishnan
,
H.-P.
Phan
,
T.
Dinh
,
D. V.
Dao
, and
N.-T.
Nguyen
,
Sensors
17
(
9
),
2061
(
2017
).
7.
H.-P.
Phan
,
D. V.
Dao
,
K.
Nakamura
,
S.
Dimitrijev
, and
N.-T.
Nguyen
,
J. Microelectromech. Syst.
24
(
6
),
1663
1677
(
2015
).
8.
A.
Krishna
,
A.
Raj
,
N.
Hatui
,
S.
Keller
, and
U.
Mishra
,
Appl. Phys. Lett.
115
,
172105
(
2019
).
9.
S.
Strite
and
H.
Morkoc
,
J. Vac. Sci. Technol., B
10
(
4
),
1237
1266
(
1992
).
10.
A.
Qamar
,
M.
Jafari
, and
M.
Rais-Zadeh
,
IEEE Electron Device Lett.
39
(
12
),
1916
1919
(
2018
);
A.
Qamar
,
S.
Sherrit
,
X.
Zheng
,
J.
Lee
,
P. X.
Feng
, and
M.
Rais-Zadeh
,
J. Microelectromech. Syst.
28
(
4
),
619
627
(
2019
).
11.
K.
Hashimoto
,
S.
Sato
,
A.
Teshigahara
,
T.
Nakamura
, and
K.
Kano
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
3
),
637
642
(
2013
).
12.
A. S.
Yalamarthy
,
M. M.
Rojo
,
A.
Bruefach
,
D.
Boone
,
K. M.
Dowling
,
P. F.
Satterthwaite
,
D.
Goldhaber-Gordon
,
E.
Pop
, and
D. G.
Senesky
,
Nano Lettt.
19
(
6
),
3770
3776
(
2019
).
13.
A. S.
Yalamarthy
,
H.
So
,
M. M.
Rojo
,
A. J.
Suria
,
X.
Xu
,
E.
Pop
, and
D. G.
Senesky
,
Adv. Funct. Mater.
28
(
22
),
1870152
(
2018
).
14.
A.
Tanaka
,
W.
Choi
,
R.
Chen
, and
S. A.
Dayeh
,
Adv. Mater.
29
(
38
),
1702557
(
2017
).
15.
J.
Lemettinen
,
N.
Chowdhury
,
H.
Okumura
,
I.
Kim
,
S.
Suihkonen
, and
T.
Palacios
,
IEEE Electron Device Lett.
40
(
8
),
1245
1248
(
2019
).
16.
N.
Onojima
,
J.
Suda
,
T.
Kimoto
, and
H.
Matsunami
,
Appl. Phys. Lett.
83
(
25
),
5208
5210
(
2003
).
17.
D.
Massoubre
,
L.
Wang
,
L.
Hold
,
A.
Fernandes
,
J.
Chai
,
S.
Dimitrijev
, and
A.
Iacopi
,
Sci. Rep.
5
(
1
),
1
8
(
2015
).
18.
W. C.
Kao
,
W. H.
Lee
,
S. H.
Yi
,
T. H.
Shen
,
H. C.
Lin
, and
M. J.
Chen
,
RSC Adv.
9
(
22
),
12226
12231
(
2019
).
19.
R.
Aubry
,
J. C.
Jacquet
,
M.
Oualli
,
O.
Patard
,
S.
Piotrowicz
,
E.
Chartier
,
N.
Michel
,
L. T.
Xuan
,
D.
Lancereau
,
C.
Potier
, and
M.
Magis
,
IEEE Electron Device Lett.
37
(
5
),
629
632
(
2016
).
20.
H.-P.
Phan
,
D. V.
Dao
,
P.
Tanner
,
L.
Wang
,
N.-T.
Nguyen
,
Y.
Zhu
, and
S.
Dimitrijev
,
Appl. Phys. Lett.
104
(
11
),
111905
(
2014
).
21.
A.
Qamar
,
H.-P.
Phan
,
J.
Han
,
P.
Tanner
,
T.
Dinh
,
L.
Wang
,
S.
Dimitrijev
, and
D. V.
Dao
,
Mater. Chem. C
3
(
34
),
8804
8809
(
2015
).
22.
A.
Qamar
,
P.
Tanner
,
D. V.
Dao
,
H.
Phan
, and
T.
Dinh
,
IEEE Electron Device Lett.
35
(
12
),
1293
1295
(
2014
);
A.
Qamar
 et al.,
IEEE Electron Device Lett.
36
(
7
),
708
710
(
2015
).
23.
L.
Wang
,
S.
Dimitrijev
,
J.
Han
,
P.
Tanner
,
A.
Iacopi
, and
L.
Hold
,
J. Cryst. Growth
329
(
1
),
67
(
2011
).
24.
L.
Wang
,
A.
Iacopi
,
S.
Dimitrijev
,
G.
Walker
,
A.
Fernandes
,
L.
Hold
, and
J.
Chaia
,
Thin Solid Films
564
,
39
(
2014
).
25.
O.
Elmazria
,
V.
Mortet
,
M. E.
Hakiki
,
M.
Nesladek
, and
P.
Alnot
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
(
6
),
710
715
(
2003
).
26.
J. S.
Shor
,
D.
Goldstein
, and
A. D.
Kurtz
,
IEEE Trans. Electron Devices
40
(
6
),
1093
1099
(
1993
).
27.
M.
Eickhoff
and
M.
Stutzmann
,
J. Appl. Phys.
96
(
5
),
2878
(
2004
).
28.
T.
Toriyama
and
S.
Sugiyama
, in
Proceedings of International Symposium on Micromechatronics and Human Science (MHS)
(
2000
), pp.
175
180
.
29.
You do not currently have access to this content.