The transport properties of a YBa2Cu3O7δ superconducting quantum interference device (SQUID) based on grooved Dayem bridge weak links are studied as a function of temperature: at high temperatures (60K<T<Tc=89 K), the weak links show properties similar to superconductor–normal conductor–superconductor junctions, while at temperatures below 60 K, the weak links behave like short Dayem bridges. Using these devices, we have fabricated SQUID magnetometers with galvanically coupled in-plane pickup loops: at T =77 K, magnetic field white noise levels as low as 63 fT/Hz have been achieved.

1.
J.
Clarke
and
A. I.
Braginski
,
The SQUID Handbook. Vol. 1, Fundamentals and Technology of SQUIDs and SQUID Systems
(
John Wiley & Sons
,
2004
).
2.
R.
Fagaly
, “
Superconducting quantum interference device instruments and applications
,”
Rev. Sci. Instrum.
77
,
101101
(
2006
).
3.
J.
Clarke
and
A. I.
Braginski
,
The SQUID Handbook. Vol. 2, Applications of SQUIDS and SQUID Systems
(
John Wiley & Sons
,
2006
).
4.
P.
Seidel
,
Applied Superconductivity: Handbook on Devices and Applications
(
John Wiley & Sons
,
2015
).
5.
C.
Granata
and
A.
Vettoliere
, “
Nano superconducting quantum interference device: A powerful tool for nanoscale investigations
,”
Phys. Rep.
614
,
1
69
(
2016
).
6.
M. J.
Martínez-Pérez
and
D.
Koelle
, “
NanoSQUIDS: Basics and recent advances
,”
Phys. Sci. Rev.
2
(
8
) (
2016
).
7.
J.
Clarke
,
Y.-H.
Lee
, and
J.
Schneiderman
, “
Focus on SQUIDS in biomagnetism
,”
Supercond. Sci. Technol.
31
,
080201
(
2018
).
8.
H.
Hilgenkamp
and
J.
Mannhart
, “
Grain boundaries in high-Tc superconductors
,”
Rev. Mod. Phys.
74
,
485
(
2002
).
9.
D.
Koelle
,
R.
Kleiner
,
F.
Ludwig
,
E.
Dantsker
, and
J.
Clarke
, “
High-transition-temperature superconducting quantum interference devices
,”
Rev. Mod. Phys.
71
,
631
(
1999
).
10.
F.
Tafuri
and
J. R.
Kirtley
, “
Weak links in high critical temperature superconductors
,”
Rep. Prog. Phys.
68
,
2573
(
2005
).
11.
E. Y.
Cho
,
Y. W.
Zhou
,
J. Y.
Cho
, and
S. A.
Cybart
, “
Superconducting nano Josephson junctions patterned with a focused helium ion beam
,”
Appl. Phys. Lett.
113
,
022604
(
2018
).
12.
M.
Faley
,
D.
Meertens
,
U.
Poppe
, and
R.
Dunin-Borkowski
, “
Graphoepitaxial high-Tc SQUIDS
,”
J. Phys.: Conf. Ser.
507
,
042009
(
2014
).
13.
E.
Mitchell
and
C.
Foley
, “
YBCO step-edge junctions with high IcRn
,”
Supercond. Sci. Technol.
23
,
065007
(
2010
).
14.
F.
Öisjöen
,
J. F.
Schneiderman
,
G.
Figueras
,
M.
Chukharkin
,
A.
Kalabukhov
,
A.
Hedström
,
M.
Elam
, and
D.
Winkler
, “
High-Tc superconducting quantum interference device recordings of spontaneous brain activity: Towards high-Tc magnetoencephalography
,”
Appl. Phys. Lett.
100
,
132601
(
2012
).
15.
J.
Nagel
,
K.
Konovalenko
,
M.
Kemmler
,
M.
Turad
,
R.
Werner
,
E.
Kleisz
,
S.
Menzel
,
R.
Klingeler
,
B.
Büchner
,
R.
Kleiner
 et al, “
Resistively shunted YBa2Cu2O7δ grain boundary junctions and low-noise SQUIDs patterned by a focused ion beam down to 80 nm linewidth
,”
Supercond. Sci. Technol.
24
,
015015
(
2010
).
16.
J.
Beyer
,
D.
Drung
,
F.
Ludwig
,
T.
Minotani
, and
K.
Enpuku
, “
Low-noise YBa2Cu2O7δ single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30° misorientation angle
,”
Appl. Phys. Lett.
72
,
203
205
(
1998
).
17.
C.
Foley
, “
Fabrication and characterisation of YBCO single grain boundary step edge junctions
,”
IEEE Trans. Appl. Supercond.
9
,
4281
4284
(
1999
).
18.
E.
Trabaldo
,
C.
Pfeiffer
,
E.
Andersson
,
R.
Arpaia
,
A.
Kalaboukhov
,
D.
Winkler
,
F.
Lombardi
, and
T.
Bauch
, “
Grooved Dayem nanobridges as building blocks of high-performance YBa2Cu2O7δ SQUID magnetometers
,”
Nano Lett.
19
,
1902
1907
(
2019
).
19.
J.
Clarke
, “
Supercurrents in lead—copper—-lead sandwiches
,”
Proc. R. Soc. A
308
,
447
471
(
1969
).
20.
S.
Nawaz
,
R.
Arpaia
,
F.
Lombardi
, and
T.
Bauch
, “
Microwave response of superconducting YBa2Cu2O7δ nanowire bridges sustaining the critical depairing current: Evidence of Josephson-like behavior
,”
Phys. Rev. Lett.
110
,
167004
(
2013
).
21.
P.
Anderson
and
A.
Dayem
, “
Radio-frequency effects in superconducting thin film bridges
,”
Phys. Rev. Lett.
13
,
195
(
1964
).
22.
D. M.
Manos
and
D. L.
Flamm
,
Plasma Etching: An Introduction
(
Elsevier
,
1989
).
23.
R.
Baghdadi
,
R.
Arpaia
,
S.
Charpentier
,
D.
Golubev
,
T.
Bauch
, and
F.
Lombardi
, “
Fabricating nanogaps in YBa2Cu2O7δ for hybrid proximity-based Josephson junctions
,”
Phys. Rev. Appl.
4
,
014022
(
2015
).
24.
C.
Granata
,
A.
Vettoliere
,
R.
Russo
,
M.
Fretto
,
N. D.
Leo
, and
V.
Lacquaniti
, “
Three-dimensional spin nanosensor based on reliable tunnel Josephson nano-junctions for nanomagnetism investigations
,”
Appl. Phys. Lett.
103
,
102602
(
2013
).
25.
M.
Xie
,
M.
Chukharkin
,
S.
Ruffieux
,
J.
Schneiderman
,
A.
Kalabukhov
,
M.
Arzeo
,
T.
Bauch
,
F.
Lombardi
, and
D.
Winkler
, “
Improved coupling of nanowire-based high-Tc squid magnetometers–simulations and experiments
,”
Supercond. Sci. Technol.
30
,
115014
(
2017
).
26.
C. D.
Tesche
and
J.
Clarke
, “
DC SQUID: Noise and optimization
,”
J. Low Temp. Phys.
29
,
301
331
(
1977
).
27.
R.
Arpaia
,
M.
Arzeo
,
S.
Nawaz
,
S.
Charpentier
,
F.
Lombardi
, and
T.
Bauch
, “
Ultra low noise YBa2Cu2O7δ nano superconducting quantum interference devices implementing nanowires
,”
Appl. Phys. Lett.
104
,
072603
(
2014
).
28.
D.
McCumber
, “
Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions
,”
J. Appl. Phys.
39
,
3113
3118
(
1968
).
29.
W.
Stewart
, “
Current-voltage characteristics of Josephson junctions
,”
Appl. Phys. Lett.
12
,
277
280
(
1968
).
30.
S.
Nawaz
,
R.
Arpaia
,
T.
Bauch
, and
F.
Lombardi
, “
Approaching the theoretical depairing current in YBa2Cu2O7δ nanowires
,”
Physica C
495
,
33
38
(
2013
).
31.
J.
Bardeen
, “
Critical fields and currents in superconductors
,”
Rev. Mod. Phys.
34
,
667
(
1962
).
32.
R.
Arpaia
,
D.
Golubev
,
R.
Baghdadi
,
R.
Ciancio
,
G.
Dražić
,
P.
Orgiani
,
D.
Montemurro
,
T.
Bauch
, and
F.
Lombardi
, “
Transport properties of ultrathin YBa2Cu2O7δ nanowires: A route to single-photon detection
,”
Phys. Rev. B
96
,
064525
(
2017
).
33.
M.
Beasley
,
J.
Mooij
, and
T.
Orlando
, “
Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors
,”
Phys. Rev. Lett.
42
,
1165
(
1979
).
34.
H.
Bartolf
,
A.
Engel
,
A.
Schilling
,
K.
Il'In
,
M.
Siegel
,
H.-W.
Hübers
, and
A.
Semenov
, “
Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures
,”
Phys. Rev. B
81
,
024502
(
2010
).
35.
R.
Arpaia
,
D.
Golubev
,
R.
Baghdadi
,
M.
Arzeo
,
G.
Kunakova
,
S.
Charpentier
,
S.
Nawaz
,
F.
Lombardi
, and
T.
Bauch
, “
Resistive state triggered by vortex entry in YBa2Cu2O7δ nanostructures
,”
Physica C
506
,
165
168
(
2014
).
36.
J.
Johansson
,
K.
Cedergren
,
T.
Bauch
, and
F.
Lombardi
, “
Properties of inductance and magnetic penetration depth in (103)-oriented YBa2Cu2O7δ thin films
,”
Phys. Rev. B
79
,
214513
(
2009
).
37.
See http://www.magnicon.com for “
Magnicon, SQUID electronics SEL-1
.”
38.
S.
Ruffieux
,
A.
Kalaboukhov
,
M.
Xie
,
M.
Chukharkin
,
C.
Pfeiffer
,
S.
Sepehri
,
J. F.
Schneiderman
, and
D.
Winkler
, “
The role of kinetic inductance on the performance of YBCO SQUID magnetometers
,”
Supercond. Sci. Technol.
33
,
025007
(
2020
).
39.
M.
Faley
,
J.
Dammers
,
Y.
Maslennikov
,
J.
Schneiderman
,
D.
Winkler
,
V.
Koshelets
,
N.
Shah
, and
R.
Dunin-Borkowski
, “
High-Tc SQUID biomagnetometers
,”
Supercond. Sci. Technol.
30
,
083001
(
2017
).
40.
F.
Ludwig
,
J.
Beyer
,
D.
Drung
,
S.
Bechstein
, and
T.
Schurig
, “
High-performance high-Tc SQUID sensors for multichannel systems in magnetically disturbed environment
,”
IEEE Trans. Appl. Supercond.
9
,
3793
3796
(
1999
).
41.
V.
Glyantsev
,
Y.
Tavrin
,
W.
Zander
,
J.
Schubert
, and
M.
Siegel
, “
The stability of dc and rf SQUIDs in static ambient fields
,”
Supercond. Sci. Technol.
9
,
A105
(
1996
).
42.
L.
Lee
,
J.
Longo
,
V.
Vinetskiy
, and
R.
Cantor
, “
Low-noise YBa2Cu2O7δ direct-current superconducting quantum interference device magnetometer with direct signal injection
,”
Appl. Phys. Lett.
66
,
1539
1541
(
1995
).
43.
B.
Riaz
,
C.
Pfeiffer
, and
J. F.
Schneiderman
, “
Evaluation of realistic layouts for next generation on-scalp MEG: Spatial information density maps
,”
Sci. Rep.
7
,
6974
(
2017
).
You do not currently have access to this content.