We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry-protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measurements, viewed using a high-speed camera under stroboscopic illumination, unambiguously demonstrate the valley-locked transport of water waves within a non-hexagonal structure. Due to the tunability of the energy's directionality by geometry, our results could be used for developing highly efficient energy harvesters, filters, and beam-splitters within dispersive media.

1.
F.
Moisy
,
M.
Rabaud
, and
K.
Salsac
, “
A synthetic Schlieren method for the measurement of the topography of a liquid interface
,”
Exp. Fluids
46
,
1021
(
2009
).
2.
C. L.
Kane
and
E. J.
Mele
, “
Z2 Topological Order and the Quantum Spin Hall Effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
3.
A. B.
Khanikaev
and
G.
Shvets
, “
Two-dimensional topological photonics
,”
Nat. Photonics
11
,
763
773
(
2017
).
4.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
5.
K.
Behnia
, “
Polarized light boosts valleytronics
,”
Nat. Nanotechnol.
7
,
488
489
(
2012
).
6.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
,
16055
(
2016
).
7.
J.-W.
Dong
,
X.-D.
Chen
,
H.
Zhu
,
Y.
Wang
, and
X.
Zhang
, “
Valley photonic crystals for control of spin and topology
,”
Nat. Mater.
16
,
298
302
(
2017
).
8.
D.
Xiao
,
W.
Yao
, and
Q.
Niu
, “
Valley-contrating physics in graphene: Magnetic moment and topological transport
,”
Phys. Rev. Lett.
99
,
236809
(
2007
).
9.
M. P.
Makwana
and
R. V.
Craster
, “
Designing multidirectional energy splitters and topological valley supernetworks
,”
Phys. Rev. B
98
,
235125
(
2018
).
10.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way transport
,”
Nat. Phys.
12
,
1124
(
2016
).
11.
H.
Schomerus
, “
Helical scattering and valleytronics in bilayer graphene
,”
Phys. Rev. B
82
,
165409
(
2010
).
12.
L.
Ye
,
C.
Qiu
,
J.
Lu
,
X.
Wen
,
Y.
Shen
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of acoustic valley vortex states and valley-chirality locked beam splitting
,”
Phys. Rev. B
95
,
174106
(
2017
).
13.
X.
Cheng
,
C.
Jouvaud
,
X.
Ni
,
S. H.
Mousavi
,
A. Z.
Genack
, and
A. B.
Khanikaev
, “
Robust reconfigurable electromagnetic pathways within a photonic topological insulator
,”
Nat. Mater.
15
,
542
(
2016
).
14.
X.
Wu
,
Y.
Meng
,
J.
Tian
,
Y.
Huang
,
H.
Xiang
,
D.
Han
, and
W.
Wen
, “
Direct observation of valley-polarized topological edge states in designer surface plasmon crystals
,”
Nat. Commun.
8
,
1304
(
2017
).
15.
B.-Z.
Xia
,
T.-T.
Liu
,
G.-L.
Huang
,
H.-Q.
Dai
,
J.-R.
Jiao
,
X.-G.
Zang
,
D.-J.
Yu
,
S.-J.
Zheng
, and
J.
Liu
, “
Topological phononic insulator with robust pseudospin-dependent transport
,”
Phys. Rev. B
96
,
094106
(
2017
).
16.
Z.
Qiao
,
J.
Jung
,
Q.
Niu
, and
A. H.
MacDonald
, “
Electronic highways in bilayer graphene
,”
Nano Lett.
11
,
3453
3459
(
2011
).
17.
M. P.
Makwana
and
R. V.
Craster
, “
Geometrically navigating topological plate modes around gentle and sharp bends
,”
Phys. Rev. B
98
,
184105
(
2018
).
18.
K.
Tang
,
M. P.
Makwana
,
R. V.
Craster
, and
P.
Sebbah
, “
Observations of symmetry induced topological mode steering in a reconfigurable elastic plate
,” arXiv:1910.08172 (
2019
).
19.
M.
Proctor
,
P. A.
Huidobro
,
S. A.
Maier
,
R. V.
Craster
, and
M. P.
Makwana
, “
Manipulating topological valley modes in plasmonic metasurfaces
,” arXiv:1909.12742 (
2019
).
20.
M. J.
Lighthill
,
Waves in Fluids
(
Cambridge University Press
,
1978
).
21.
S.
Wu
,
Y.
Wu
, and
J.
Mei
, “
Topological helical edge states in water waves over a topographical bottom
,”
New J. Phys.
20
,
023051
(
2018
).
22.
N.
Laforge
,
V.
Laude
,
F.
Chollet
,
A.
Khelif
,
M.
Kadic
,
Y.
Guo
, and
R.
Fleury
, “
Observation of topological gravity-capillary waves in a water wave crystal
,”
New J. Phys.
21
,
083031
(
2019
).
23.
L. G.
Bennetts
,
M. A.
Peter
, and
R. V.
Craster
, “
Graded resonator arrays for spatial frequency separation and amplification of water waves
,”
J. Fluid Mech.
854
,
R4
(
2018
).
24.
G.
Dupont
,
F.
Remy
,
O.
Kimmoun
,
B.
Molin
,
S.
Guenneau
, and
S.
Enoch
, “
Type of dike using C-shaped vertical cylinders
,”
Phys. Rev. B
96
,
180302
(
2017
).
25.
C. M.
Linton
and
D. V.
Evans
, “
The interaction of waves with arrays of vertical circular cylinders
,”
J. Fluid Mech.
215
,
549
569
(
1990
).
26.
W.-Y.
He
and
C. T.
Chan
, “
The emergence of Dirac points in photonic crystals with mirror symmetry
,”
Sci. Rep.
5
,
8186
(
2015
).
27.
M.
Makwana
,
R.
Craster
, and
S.
Guenneau
, “
Topological beam-splitting in photonic crystals
,”
Opt. Express
27
,
16088
(
2019
).
28.
M. P.
Makwana
and
G.
Chaplain
, “
Tunable three-way topological energy-splitter
,”
Sci. Rep.
9
,
18939
(
2019
).
29.
B.-Z.
Xia
,
S.-J.
Zheng
,
T.-T.
Liu
,
J.-R.
Jiao
,
N.
Chen
,
H.-Q.
Dai
,
D.-J.
Yu
, and
J.
Liu
, “
Observation of valleylike edge states of sound at a momentum away from the high-symmetry points
,”
Phys. Rev. B
97
,
155124
(
2018
).
30.
J.
Manzanares-Martinez
,
C. A.
Romero-Ramos
, and
J. A.
Gaspar-Armenta
, “
Dirac cone switching in two-dimensional photonic crystals by rotation of the crystal basis
,”
Results Phys.
15
,
102748
(
2019
).
31.
T.
Ochiai
, “
Photonic realization of the (2 + 1)-dimensional parity anomaly
,”
Phys. Rev. B
86
,
075152
(
2012
).
32.
M.
Berger
and
B.
Gostiaux
,
Differential Geometry: Manifolds, Curves, and Surfaces
(
Springer-Verlag
,
1988
).
33.
K.
Qian
,
D. J.
Apigo
,
C.
Prodan
,
Y.
Barlas
, and
E.
Prodan
, “
Theory and experimental investigation of the quantum valley Hall effect
,” arXiv:1803.08781 (
2018
).
34.
C. L.
Fefferman
,
J. P.
Lee-Thorp
, and
M. I.
Weinstein
, “
Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures
,”
2D Mater.
3
,
014008
(
2016
).
35.
J. F.
Joanny
and
P. G.
de Gennes
, “
A model for contact angle hysteresis
,”
J. Chem. Phys.
81
,
552
(
1984
).
36.
J. C.
Padrino
and
D. D.
Joseph
, “
Correction of Lamb's dissipation calculation for the effects of viscosity on capillary-gravity waves
,”
Phys. Fluids
19
,
082105
(
2007
).
37.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).

Supplementary Material

You do not currently have access to this content.