Acoustic waves can act as tweezers to trap and rotate particles without contact, which have promising application in the manipulation of tissues and living cells. Here, we report a realization of acoustic tweezers and motor. The device is fabricated on a silicon chip scaled to manipulate living cells. The silicon chip transfers incident plane ultrasonic waves into a vortex beam, which traps particles in the center of the device and exerts torque on the particles simultaneously. As an illustration, we put living shrimp eggs inside the acoustic vortex and observe the acoustic driving rotation. The rotation frequency of the shrimp egg can be easily controlled, and its relationship between driving voltage and the egg size is established. We anticipate that the acoustic tweezers and motor can find widespread applications in cell manipulation, cell screening, and micro actuator in the future.

1.
O. A.
Sapozhnikov
and
M. R.
Bailey
, “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
(
2
),
661
676
(
2013
).
2.
K.
Volke-Sepulveda
,
A. O.
Santillan
, and
R. R.
Boullosa
, “
Transfer of angular momentum to matter from acoustical vortices in free space
,”
Phys. Rev. Lett.
100
,
024302
(
2008
).
3.
L. K.
Zhang
and
P. L.
Marston
, “
Acoustic radiation torque and the conservation of angular momentum (L)
,”
J. Acoust. Soc. Am.
129
,
1679
(
2011
).
4.
B.
Diego
,
J.
Thomas
, and
R.
Marchiano
, “
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere
,”
J. Acoust. Soc. Am.
133
(
1
),
25
36
(
2013
).
5.
B.
Diego
,
J.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
(
2
),
024301
(
2016
).
6.
B.
Diego
,
J.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
(
7
),
074301
(
2018
).
7.
D.
Foresti
and
D.
Poulikakos
, “
Acoustophoretic contactless elevation, orbital transport and spinning of matter in air
,”
Phys. Rev. Lett.
112
,
024301
(
2014
).
8.
I.
Bernard
,
A. A.
Doinikov
,
P.
Marmottant
,
D.
Rabaud
,
C.
Poulain
, and
P.
Thibault
, “
Controlled rotation and translation of spherical particles or living cells by surface acoustic waves
,”
Lab Chip
17
,
2470
2480
(
2017
).
9.
M.
Wu
 et al, “
Isolation of exosomes from whole blood by integrating acoustics and microfluidics
,”
Proc. Natl. Acad. Sci.
114
,
10584
10589
(
2017
).
10.
S.
Mohanty
,
U.
Siciliani de Cumis
,
M.
Solsona
, and
S.
Misra
, “
Bi-directional transportation of micro-agents induced by symmetry-broken acoustic streaming
,”
AIP Adv.
9
,
035352
(
2019
).
11.
M.
Baudoin
,
J.
Gerbedoen
,
A.
Riaud
,
O. B.
Matar
,
N.
Smagin
, and
J.
Thomas
, “
Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers
,”
Sci. Adv.
5
,
eaav1967
(
2019
).
12.
X.
Chen
,
K. H.
Lam
,
R.
Chen
,
Z.
Chen
,
X.
Qian
,
J.
Zhang
,
P.
Yu
, and
Q.
Zhou
, “
Acoustic levitation and manipulation by a high-frequency focused ring ultrasonic transducer
,”
Appl. Phys. Lett.
114
,
054103
(
2019
).
13.
L.
Robert
,
J.
Mobley
, and
L. K.
Zhang
, “
Ultrasonic extraction and manipulation of droplets from a liquid-liquid interface with near-field acoustic tweezers
,”
Phys. Rev. Appl.
12
,
061001
(
2019
).
14.
S. K.
Mohanty
,
A.
Uppal
, and
P. K.
Gupta
, “
Self-rotation of red blood cells in optical tweezers: Prospects for high throughput malaria diagnosis
,”
Biotechnol. Lett.
26
,
971
974
(
2004
).
15.
M. E. J.
Friese
,
T. A.
Nieminen
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Optical alignment and spinning of laser-trapped microscopic particles
,”
Nature
394
,
348
350
(
1998
).
16.
D. G.
Grier
, “
A revolution in optical manipulation
,”
Nature
424
,
810
816
(
2003
).
17.
M. B.
Rasmussen
,
L. B.
Oddershede
, and
H.
Siegumfeldt
, “
Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria
,”
Appl. Environ. Microbiol.
74
,
2441
2446
(
2008
).
18.
T. T.
Perkins
, “
Optical traps for single molecule biophysics: A primer
,”
Laser Photonics Rev.
3
(
1-2
),
203
220
(
2009
).
19.
O. M.
Maragò
,
P. H.
Jones
,
P. G.
Gucciardi
,
G.
Volpe
, and
A. C.
Ferrari
, “
Optical trapping and manipulation of nanostructures
,”
Nat. Nanotechnol.
8
,
807
819
(
2013
).
20.
M.
Zhong
,
X.
Wei
,
J.
Zhou
,
Z.
Wang
, and
Y.
Li
, “
Trapping red blood cells in living animals using optical tweezers
,”
Nat. Commun.
4
,
1768
(
2013
).
21.
M.
Liu
,
T.
Zentgraf
,
Y.
Liu
,
G.
Bartal
, and
X.
Zhang
, “
Light-driven nanoscale plasmonic motors
,”
Nat. Nanotechnol.
5
,
570
573
(
2010
).
22.
W.
Wang
,
S.
Li
,
L.
Mair
,
S.
Ahmed
,
T. J.
Huang
, and
T. E.
Mallouk
, “
Acoustic propulsion of nanorod motors inside living cells
,”
Angew. Chem., Int. Ed.
53
,
3201
3204
(
2014
).
23.
D.
Ahmed
,
A.
Ozcelik
,
N.
Bojanala
,
N.
Nama
,
A.
Upadhyay
,
Y.
Chen
,
W.
Hanna-Rose
, and
T. J.
Huang
, “
Rotational manipulation of single cells and organisms using acoustic waves
,”
Nat. Commun.
7
,
11085
(
2016
).
24.
T.
Wang
,
M.
Ke
,
W.
Li
,
Q.
Yang
,
C.
Qiu
, and
Z.
Liu
, “
Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure
,”
Appl. Phys. Lett.
109
,
123506
(
2016
).
25.
Z.
Hong
,
J.
Zhang
, and
B. W.
Drinkwater
, “
Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid microparticle mixtures
,”
Phys. Rev. Lett.
114
,
214301
(
2015
).
26.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
27.
A.
Marzo
,
M.
Caleap
, and
B. W.
Drinkwater
, “
Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles
,”
Phys. Rev. Lett.
120
,
044301
(
2018
).
28.
J. V.
Rao
,
P.
Kavitha
,
N. M.
Jakka
,
V.
Sridhar
, and
P. K.
Usman
, “
Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina
,”
Arch. Environ. Contam. Toxicol.
53
,
227
232
(
2007
).
29.
N.
Jiménez
,
V.
Romero-García
,
L. M.
García-Raffi
,
F.
Camarena
, and
K.
Staliunas
, “
Sharp acoustic vortex focusing by Fresnel-spiral zone plates
,”
Appl. Phys. Lett.
112
,
204101
(
2018
).
30.
A.
Anhäuser
,
R.
Wunenburger
, and
E.
Brasselet
, “
Acoustic rotational manipulation using orbital angular momentum transfer
,”
Phys. Rev. Lett.
109
,
034301
(
2012
).
31.
L. K.
Zhang
, “
Reversals of orbital angular momentum transfer and radiation torque
,”
Phys. Rev. Appl.
10
,
034039
(
2018
).
32.
L. K.
Zhang
and
P. L.
Marston
, “
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
,”
Phys. Rev. E
84
,
065601
(
2011
).
33.
C. E. M.
Demore
,
Z.
Yang
,
A.
Volovick
,
S.
Cochran
,
M. P.
MacDonald
, and
G. C.
Spalding
, “
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams
,”
Phys. Rev. Lett.
108
,
194301
(
2012
).
34.
S. B.
Chen
and
X.
Ye
, “
Faxén's laws of a composite sphere under creeping flow conditions
,”
J. Colloid Interface Sci.
221
,
50
57
(
2000
).

Supplementary Material

You do not currently have access to this content.