Ferroelectrics with a perovskite structure, exhibiting strong coupling between photons, carriers, and phonons, have been demonstrated to show a strong photostrictive response. Limited by the optical bandgap, most of the reported ferroelectric perovskites respond only to UV light or weakly respond to visible light below 550 nm. Herein, the photostrictive performance of CaCu3Ti4O12 (CCTO) ceramics, with a low bandgap of ∼1.5 eV (ideal for solar spectrum absorption), is comprehensively investigated. Although the compound presents no ferroelectricity, in general, a giant photostriction of ∼10−3 with a large photostrictive efficiency of ∼10−11 m3/W in CCTO ceramics is observed by applying purple (405 nm), green (520 nm), and red (655 nm) laser illumination. Evidenced by the XRD peak shifts under external laser illumination and the phonon mode shifts via the power-dependent Raman spectrum, the light-induced non-thermal deformation in CCTO is attributed to the enhanced stretching of O–Ti–O chains and the distortions of TiO6 octahedrons. The excellent and uniform photostrictive performance of CCTO ceramics in the visible-light region makes them potential candidates for practical applications in next-generation photo-driven electromechanical devices.

1.
Z. Y.
Meng
,
U.
Kumar
, and
L. E.
Cross
,
J. Am. Ceram. Soc.
68
,
459
(
1985
).
2.
3.
L.
Hines
,
K.
Petersen
,
G. Z.
Lum
, and
M.
Sitti
,
Adv. Mater.
29
,
1603483
(
2017
).
4.
S. M.
Mirvakili
and
I. W.
Hunter
,
Adv. Mater.
30
,
1704407
(
2018
).
5.
B.
Chen
,
T.
Li
,
Q.
Dong
,
E.
Mosconi
,
J.
Song
,
Z.
Chen
,
Y.
Deng
,
Y.
Liu
,
S.
Ducharme
,
A.
Gruverman
,
F. D.
Angelis
, and
J.
Huang
,
Nat. Mater.
17
,
1020
(
2018
).
6.
T.
Figielski
,
Phys. Status Solidi B
1
,
306
(
1961
).
7.
K.
Uchino
and
M.
Aizawa
,
Jpn. J. Appl. Phys., Part 1
24
,
139
(
1985
).
8.
B.
Kundys
,
M.
Viret
,
D.
Colson
, and
D. O.
Kundys
,
Nat. Mater.
9
,
803
(
2010
).
9.
B.
Kundys
,
Appl. Phys. Rev.
2
,
011301
(
2015
).
10.
T.-C.
Wei
,
H.-P.
Wang
,
H.-J.
Liu
,
D.-S.
Tsai
,
J.-J.
Ke
,
C.-L.
Wu
,
Y.-P.
Yin
,
Q.
Zhan
,
G.-R.
Lin
,
Y.-H.
Chu
, and
J.-H.
He
,
Nat. Commun.
8
,
15018
(
2017
).
11.
T.-C.
Wei
,
H.-P.
Wang
,
T.-Y.
Li
,
C.-H.
Lin
,
Y.-H.
Hsieh
,
Y.-H.
Chu
, and
J.-H.
He
,
Adv. Mater.
29
,
1701789
(
2017
).
12.
H. S.
Tzou
and
C. S.
Chou
,
Smart Mater. Struct.
5
,
230
(
1996
).
13.
K.
Uchino
,
Mater. Res. Innovations
1
,
163
(
1997
).
14.
P.
Poosanaas
,
K.
Tonooka
, and
K.
Uchino
,
Mechatronics
10
,
467
(
2000
).
15.
H.
Zeng
,
P.
Wasylczyk
,
D. S.
Wiersma
, and
A.
Priimagi
,
Adv. Mater.
30
,
1703554
(
2018
).
16.
Z.
Wang
,
K.
Li
,
Q.
He
, and
S.
Cai
,
Adv. Mater.
31
,
1806849
(
2019
).
17.
Y.
Yu
,
M.
Nakano
, and
T.
Ikeda
,
Nature
425
,
145
(
2003
).
18.
T. J.
White
and
D. J.
Broer
,
Nat. Mater.
14
,
1087
(
2015
).
20.
Z.
Zhang
,
R. C.
Remsing
,
H.
Chakraborty
,
W.
Gao
,
G.
Yuan
,
M. L.
Klein
, and
S.
Ren
,
Proc. Natl. Acad. Sci.
115
,
3776
(
2018
).
21.
J.
Lagowski
and
H. C.
Gatos
,
Appl. Phys. Lett.
20
,
14
(
1972
).
22.
J. R.
Buschert
and
R.
Colella
,
Solid State Commun.
80
,
419
(
1991
).
23.
S.
Gayathri
,
S.
Sridevi
,
G.
Singh
,
B. N.
Shivananju
, and
S.
Asokan
,
Sens. Actuators, A
279
,
688
(
2018
).
24.
J.-C.
Yang
,
Y.-D.
Liou
,
W.-Y.
Tzeng
,
H.-J.
Liu
,
Y.-W.
Chang
,
P.-H.
Xiang
,
Z.
Zhang
,
C.-G.
Duan
,
C.-W.
Luo
,
Y.-C.
Chen
, and
Y.-H.
Chu
,
Nano Lett.
18
,
7742
(
2018
).
25.
K.
Uchino
,
M.
Aizawa
, and
L. S.
Nomura
,
Ferroelectrics
64
,
199
(
1985
).
26.
C.
Paillard
,
B.
Xu
,
B.
Dkhil
,
G.
Geneste
, and
L.
Bellaiche
,
Phys. Rev. Lett.
116
,
247401
(
2016
).
27.
S.
Matzen
,
L.
Guillemot
,
T.
Maroutian
,
S. K. K.
Patel
,
H.
Wen
,
A. D.
DiChiara
,
G.
Agnus
,
O. G.
Shpyrko
,
E. E.
Fullerton
,
D.
Ravelosona
,
P.
Lecoeur
, and
R.
Kukreja
,
Adv. Electron. Mater.
5
,
1800709
(
2019
).
28.
C.
Paillard
,
S.
Prosandeev
, and
L.
Bellaiche
,
Phys. Rev. B
96
,
045205
(
2017
).
29.
Y.
Yang
,
C.
Paillard
,
B.
Xu
, and
L.
Bellaiche
,
J. Phys.: Condens. Matter
30
,
073001
(
2018
).
30.
B.
Kundys
,
M.
Viret
,
C.
Meny
,
V.
Da Costa
,
D.
Colson
, and
B.
Doudin
,
Phys. Rev. B
85
,
092301
(
2012
).
31.
A. P.
Ramirez
,
M. A.
Subramanian
,
M.
Gardel
,
G.
Blumberg
,
D.
Li
,
T.
Vogt
, and
S. M.
Shapiro
,
Solid State Commun.
115
,
217
(
2000
).
32.
M. A.
Subramanian
,
D.
Li
,
N.
Duan
,
B. A.
Reisner
, and
A. W.
Sleight
,
J. Solid State Chem.
151
,
323
(
2000
).
33.
C. C.
Homes
,
T.
Vogt
,
S. M.
Shapiro
,
S.
Wakimoto
, and
A. P.
Ramirez
,
Science
293
,
673
(
2001
).
34.
Y.
Wang
,
W.
Jie
,
C.
Yang
,
X.
Wei
, and
J.
Hao
,
Adv. Funct. Mater.
29
,
1808118
(
2019
).
35.
N.
Kolev
,
R. P.
Bontchev
,
A. J.
Jacobson
,
V. N.
Popov
,
V. G.
Hadjiev
,
A. P.
Litvinchuk
, and
M. N.
Iliev
,
Phys. Rev. B
66
,
132102
(
2002
).
36.
Y.
Liu
,
R. L.
Withers
, and
X. Y.
Wei
,
Phys. Rev. B
72
,
134104
(
2005
).
37.
S.-Y.
Chung
,
I.-D.
Kim
, and
S.-J. L.
Kang
,
Nat. Mater.
3
,
774
(
2004
).
38.
T.-T.
Fang
and
C. P.
Liu
,
Chem. Mater.
17
,
5167
(
2005
).
39.
C. R.
Foschini
,
B.
Hangai
,
P. P.
Ortega
,
E.
Longo
,
M.
Cilense
, and
A. Z.
Simões
,
Process. Appl. Ceram.
13
,
219
(
2019
).
40.
B.
Kundys
,
Y.
Bukhantsev
,
S.
Vasiliev
,
D.
Kundys
,
M.
Berkowski
, and
V. P.
Dyakonov
,
Rev. Sci. Instrum.
75
,
2192
(
2004
).
41.
K.
Takagi
,
S.
Kikuchi
,
J.-F.
Li
,
H.
Okamura
,
R.
Watanabe
, and
A.
Kawasaki
,
J. Am. Ceram. Soc.
87
,
1477
(
2004
).
42.
Y.
Huang
,
C.
Zhao
, and
J.
Wu
,
Adv. Electron. Mater.
4
,
1800075
(
2018
).
43.
X. J.
Wang
,
J. H.
Huang
, and
J.
Wang
,
Smart Mater. Struct.
24
,
075017
(
2015
).
44.
P.
Poosanaas
,
A.
Dogan
,
S.
Thakoor
, and
K.
Uchino
,
J. Appl. Phys.
84
,
1508
(
1998
).

Supplementary Material

You do not currently have access to this content.