The transport of soft particles through narrow channels or pores is ubiquitous in biological systems and industrial processes. On many occasions, the particles deform and temporarily block the channel, inducing a built-up pressure. This pressure buildup often has a profound effect on the behavior of the respective system; yet, it is difficult to be characterized. In this work, we establish a quantitative correlation between the built-up pressure and the material and geometry properties through experiments and mechanics analysis. We fabricate microgels with a controlled diameter and elastic modulus by microfluidics. We then force them to individually pass through a constrictive or straight confining channel and monitor the pressure variation across the channel. To interpret the pressure measurement, we develop an analytical model based on the Neo-Hookean material law to quantify the dependence of the maximum built-up pressure on the radius ratio of the elastic sphere to the channel, the elastic modulus of the sphere, and two constant parameters in the friction constitutive law between the sphere and the channel wall. This model not only agrees very well with the experimental measurement conducted at large microgel deformation but also recovers the classical theory of contact at small deformation. Featuring a balance between accuracy and simplicity, our result could shed light on understanding various biological and engineering processes involving the passage of elastic particles through narrow channels or pores.

1.
J. L.
McWhirter
,
H.
Noguchi
, and
G.
Gompper
,
Soft Matter
7
,
10967
(
2011
).
2.
R.
Skalak
and
P. I.
Branemark
,
Science
164
,
717
(
1969
).
3.
M.
Bendszus
,
R.
Klein
,
R.
Burger
,
M.
Warmuth-Metz
,
E.
Hofmann
, and
L.
Solymosi
,
AJNR Am. J. Neuroradiol.
21
,
255
(
2000
).
4.
J. B.
Spies
,
C.
Cornell
,
R.
Worthington-Kirsch
,
J. C.
Lipman
, and
J. F.
Benenati
,
J. Vasc. Interventional Radiol.
18
,
203
(
2007
).
5.
B. J.
Bai
,
L. X.
Li
,
Y. Z.
Liu
,
H.
Liu
,
Z. G.
Wang
, and
C. M.
You
,
SPE Reservoir Eval. Eng.
10
,
415
(
2007
).
6.
B. J.
Bai
,
Y. Z.
Liu
,
J. P.
Coste
, and
L. X.
Li
,
SPE Reservoir Eval. Eng.
10
,
176
(
2007
).
7.
H. M.
Wyss
,
T.
Franke
,
E.
Mele
, and
D. A.
Weitz
,
Soft Matter
6
,
4550
(
2010
).
8.
Y.
Li
,
E.
Kumacheva
, and
A.
Ramachandran
,
Soft Matter
9
,
10391
(
2013
).
9.
Y.
Li
,
O. S.
Sariyer
,
A.
Ramachandran
,
S.
Panyukov
,
M.
Rubinstein
, and
E.
Kumacheva
,
Sci. Rep.
5
,
17017
(
2015
).
10.
S.
Hu
,
R.
Wang
,
C. M.
Tsang
,
S. W.
Tsao
,
D.
Sun
, and
R. H. W.
Lam
,
RSC Adv.
8
,
1030
(
2018
).
11.
W. H.
Lei
,
C. Y.
Xie
,
T. J.
Wu
,
X. C.
Wu
, and
M. R.
Wang
,
Sci. Rep.
9
,
1453
(
2019
).
12.
C.
Giverso
,
A.
Grillo
, and
L.
Preziosi
,
Biomech. Model. Mechanobiol.
13
,
481
(
2014
).
13.
14.
P.
Gravesen
,
J.
Branebjerg
, and
O. S.
Jensen
,
J. Micromech. Microeng.
3
,
168
(
1993
).
15.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
,
Rep. Prog. Phys.
75
,
016601
(
2012
).
16.
M. G.
O'Connell
,
N. B.
Lu
,
C. A.
Browne
, and
S. S.
Datta
,
Soft Matter
15
,
3620
(
2019
).
17.
J. R.
Rice
,
N.
Lapusta
, and
K.
Ranjith
,
J. Mech. Phys. Solids
49
,
1865
(
2001
).
18.
J.
Yang
,
R.
Bai
,
B.
Chen
, and
Z.
Suo
,
Adv. Funct. Mater.
30
,
1901693
(
2019
).
19.
M. C.
Boyce
and
E. M.
Arruda
,
Rubber Chem. Technol.
73
,
504
(
2000
).
20.
S.
Schmidt
,
M.
Zeiser
,
T.
Hellweg
,
C.
Duschl
,
A.
Fery
, and
H.
Möhwald
,
Adv. Funct. Mater.
20
,
3235
(
2010
).
21.
J.
Gong
,
Y.
Iwasaki
, and
Y.
Osada
,
J. Phys. Chem. B
103
,
6001
(
1999
).
22.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
1985
).

Supplementary Material

You do not currently have access to this content.