Nanostructured gratings in a metal surface can highly enhance nonlinear optical processes. The geometrical parameters that characterize a grating can be optimized to achieve intense near-fields, which in turn enhance the nonlinear optical signals. For a nonlinear process that involves multiple frequencies, like four-wave mixing (FWM), the optimization of grating parameters necessary to enhance the radiation in-coupling for both frequencies is not trivial. Here, we propose, compute, and experimentally demonstrate a grating design that is resonant to two excitation frequencies and thus enhances the frequency mixing processes more efficiently. Second- and third-order nonlinear mechanisms are studied using two spatially and temporally overlapped laser pulses with different frequencies. Using our grating design, we achieve an unprecedented nonlinear FWM enhancement factor of 7×103.

1.
P. A.
Franken
,
A. E.
Hill
,
C.
Peters
, and
G.
Weinreich
, “
Generation of optical harmonics
,”
Phys. Rev. Lett.
7
,
118
120
(
1961
).
2.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequency generation
,”
Nature
337
,
519
525
(
1989
).
3.
J. A. H.
Van Nieuwstadt
,
M.
Sandtke
,
R. H.
Harmsen
,
F. B.
Segerink
,
J. C.
Prangsma
,
S.
Enoch
, and
L.
Kuipers
, “
Strong modification of the nonlinear optical response of metallic subwavelength hole arrays
,”
Phys. Rev. Lett.
97
,
146102
(
2006
).
4.
E.
Almeida
and
Y.
Prior
, “
Rational design of metallic nanocavities for resonantly enhanced four-wave mixing
,”
Sci. Rep.
5
,
10033
(
2015
).
5.
R.
Kolkowski
,
J.
Szeszko
,
B.
Dwir
,
E.
Kapon
, and
J.
Zyss
, “
Non-centrosymmetric plasmonic crystals for second-harmonic generation with controlled anisotropy and enhancement
,”
Laser Photonics Rev.
10
,
287
298
(
2016
).
6.
J.
Renger
,
R.
Quidant
,
N.
Van Hulst
, and
L.
Novotny
, “
Surface-enhanced nonlinear four-wave mixing
,”
Phys. Rev. Lett.
104
,
046803
(
2010
).
7.
P.
Genevet
,
J. P.
Tetienne
,
E.
Gatzogiannis
,
R.
Blanchard
,
M. A.
Kats
,
M. O.
Scully
, and
F.
Capasso
, “
Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings
,”
Nano Lett.
10
,
4880
4883
(
2010
).
8.
M.
Kauranen
and
A. V.
Zayats
, “
Nonlinear plasmonics
,”
Nat. Photonics
6
,
737
748
(
2012
).
9.
N.
Panoiu
,
W.
Sha
,
D.
Lei
, and
G.
Li
, “
Nonlinear optics in plasmonic nanostructures
,”
J. Opt.
20
,
083001
(
2018
).
10.
Y.
Jung
,
H.
Chen
,
L.
Tong
, and
J. X.
Cheng
, “
Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing
,”
J. Phys. Chem. C
113
,
2657
2663
(
2009
).
11.
Y.
Zhang
,
N. K.
Grady
,
C.
Ayala-Orozco
, and
N. J.
Halas
, “
Three-dimensional nanostructures as highly efficient generators of second harmonic light
,”
Nano Lett.
11
,
5519
5523
(
2011
).
12.
H.
Aouani
,
O.
Mahboub
,
N.
Bonod
,
E.
Devaux
,
E.
Popov
,
H.
Rigneault
,
T. W.
Ebbesen
, and
J.
Wenger
, “
Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations
,”
Nano Lett.
11
,
637
644
(
2011
).
13.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
14.
H.
Hagman
,
O.
Bäcke
,
J.
Kiskis
,
F.
Svedberg
,
M. P.
Jonsson
,
F.
Höök
, and
A.
Enejder
, “
Plasmon-enhanced four-wave mixing by nanoholes in thin gold films
,”
Opt. Lett.
39
,
1001
1004
(
2014
).
15.
Y.
Blechman
,
E.
Almeida
,
B.
Sain
, and
Y.
Prior
, “
Optimizing the nonlinear optical response of plasmonic metasurfaces
,”
Nano Lett.
19
,
261
268
(
2019
).
16.
C. Y.
Wang
,
H. Y.
Chen
,
L.
Sun
,
W. L.
Chen
,
Y. M.
Chang
,
H.
Ahn
,
X.
Li
, and
S.
Gwo
, “
Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics
,”
Nat. Commun.
6
,
7734
(
2015
).
17.
H.
Harutyunyan
,
G.
Volpe
,
R.
Quidant
, and
L.
Novotny
, “
Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas
,”
Phys. Rev. Lett.
108
,
217403
(
2012
).
18.
Z.
Zhu
,
B.
Bai
,
H.
Duan
,
H.
Zhang
,
M.
Zhang
,
O.
You
,
Q.
Li
,
Q.
Tan
,
J.
Wang
,
S.
Fan
, and
G.
Jin
, “
M-shaped grating by nanoimprinting: A replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps
,”
Small
10
,
1603
1611
(
2014
).
19.
S.
Park
,
J. W.
Hahn
, and
J. Y.
Lee
, “
Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation
,”
Opt. Express
20
,
4856
4870
(
2012
).
20.
M.
Weismann
and
N. C.
Panoiu
, “
Theoretical and computational analysis of second-and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers
,”
Phys. Rev. B
94
,
035435
(
2016
).
You do not currently have access to this content.