Designing and implementing means of locally trapping magnetic beads and understanding the factors underlying the bead capture force are important steps toward advancing the capture-release process of magnetic particles for biological applications. In particular, capturing magnetically labeled cells using magnetic microstructures with perpendicular magnetic anisotropy (PMA) will enable an approach to cell manipulation for emerging lab-on-a-chip devices. Here, a Co (0.2 nm)/Ni (0.4 nm) multilayered structure was designed to exhibit strong PMA and large saturation magnetization (Ms). Finite element simulations were performed to assess the dependence of the capture force on the value of Ms. The simulated force profile indicated the largest force at the perimeter of the disks. Arrays of Co/Ni disk structures of (4–7) μm diameter were fabricated and tested in a microchannel with suspended fluorescent magnetic beads. The magnetic beads were captured and localized to the edge of the disks as predicted by the simulations. This approach has been demonstrated to enable uniform assembly of magnetic beads without external fields and may provide a pathway toward precise cell manipulation methods.

1.
M.
Johnson
,
P.
Bloemen
,
F.
Broeder
, and
J.
Vries
, “
Magnetic anisotropy in metallic multilayers
,”
Rep. Prog. Phys.
59
(
11
),
1409
1458
(
1996
).
2.
G.
Medoro
,
N.
Manaresi
,
A.
Leonardi
,
L.
Altomare
,
M.
Tartagni
, and
R.
Guerrieri
, “
A lab-on-a-chip for cell detection and manipulation
,”
IEEE Sens. J.
3
(
3
),
317
325
(
2003
).
3.
Z.
Xiao
,
R.
Khojah
,
M.
Chooljian
,
R.
Lo Conte
,
J. D.
Schneider
,
K.
Fitzell
,
R. V.
Chopdekar
,
Y.
Wang
,
A.
Scholl
,
J.
Chang
,
G. P.
Carman
,
J.
Bokor
,
D.
Di Carlo
, and
R. N.
Candler
, “
Cytocompatible magnetostrictive microstructures for nano-and microparticle manipulation on linear strain response piezoelectrics
,”
Multifunct. Mater.
1
(
1
),
014004
(
2018
).
4.
J.-W.
Choi
,
K. W.
Oh
,
J. H.
Thomas
,
W. R.
Heineman
,
H. B.
Halsall
,
J. H.
Nevin
,
A. J.
Helmicki
,
H. T.
Henderson
, and
C. H.
Ahn
, “
An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities
,”
Lab Chip
2
(
1
),
27
(
2002
).
5.
S.
Berensmeier
, “
Magnetic particles for the separation and purification of nucleic acids
,”
Appl. Microbiol. Biotechnol.
73
(
3
),
495
504
(
2006
).
6.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
, “
Multitarget magnetic activated cell sorter
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
47
),
18165
18170
(
2008
).
7.
N.
Pamme
, “
Magnetism and microfluidics
,”
Lab Chip
6
(
1
),
24
38
(
2006
).
8.
F. J. A.
den Broeder
,
W.
Hoving
, and
P. J. H.
Bloemen
, “
Magnetic anisotropy of multilayers
,”
J. Magn. Magn. Mater.
93
,
562
570
(
1991
).
9.
G.
Bochi
,
C. A.
Ballentine
,
H. E.
Inglefield
,
C. V.
Thompson
,
R. C.
O'handley
,
H. J.
Hug
,
B.
Stiefel
,
A.
Moser
, and
H.-J.
Güntherodt
, “
Perpendicular magnetic anisotropy, domains, and misfit strain in epitaxial Ni/Cu 1− x Ni x/Cu/Si (001) thin films
,”
Phys. Rev. B
52
(
10
),
7311
7321
(
1995
).
10.
J.-M. L.
Beaujour
,
W.
Chen
,
K.
Krycka
,
C.-C.
Kao
,
J. Z.
Sun
, and
A. D.
Kent
, “
Ferromagnetic resonance study of sputtered Co|Ni multilayers
,”
Eur. Phys. J. B
59
,
475
483
(
2007
).
11.
R.
Sbiaa
,
H.
Meng
, and
S. N.
Piramanayagam
, “
Materials with perpendicular magnetic anisotropy for magnetic random access memory
,”
Phys. Status Solidi RRL.
5
(
12
),
413
419
(
2011
).
12.
D. B.
Gopman
,
C. L.
Dennis
,
P. J.
Chen
,
Y. L.
Iunin
,
P.
Finkel
,
M.
Staruch
, and
R. D.
Shull
, “
Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy
,”
Sci. Rep.
6
(
1
),
27774
(
2016
).
13.
A.
Hultgren
,
M.
Tanase
,
C. S.
Chen
,
G. J.
Meyer
, and
D. H.
Reich
, “
Cell manipulation using magnetic nanowires
,”
Cit. J. Appl. Phys.
93
,
7554
(
2003
).
14.
H.
Yun
,
K.
Kim
, and
W. G.
Lee
, “
Cell manipulation in microfluidics
,”
Biofabrication
5
(
2
),
022001
. (
2013
).
15.
J.
Voldman
, “
Electrical forces for Microscale cell manipulation
,”
Annu. Rev. Biomed. Eng.
8
(
1
),
425
454
(
2006
).
16.
A.
Ashkin
and
J. M.
Dziedzic
, “
Internal cell manipulation using infrared laser traps
,”
Proc. Natl. Acad. Sci. U. S. A.
86
(
20
),
7914
7918
(
1989
).
17.
Y.
Tokura
, “
Multiferroics—toward strong coupling between magnetization and polarization in a solid
,”
J. Magn. Magn. Mater.
310
(
2
),
1145
1150
(
2007
).
18.
C.
Liu
,
T.
Stakenborg
,
S.
Peeters
, and
L.
Lagae
, “
Cell manipulation with magnetic particles toward microfluidic cytometry
,”
J. Appl. Phys.
105
(
10
),
102014
(
2009
).
19.
C.-Y.
Liang
,
S. M.
Keller
,
A. E.
Sepulveda
,
A.
Bur
,
W.-Y.
Sun
,
K.
Wetzlar
, and
G. P.
Carman
, “
Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model
,”
Nanotechnol.
25
(
43
),
435701
(
2014
).
20.
A.
Barra
,
A.
Mal
,
G.
Carman
, and
A.
Sepulveda
, “
Voltage induced mechanical/spin wave propagation over long distances
,”
Appl. Phys. Lett
.,
110
(
7
),
072401
(
2017
).
21.
Z.
Xiao
,
R. L.
Conte
,
C.
Chen
,
C.-Y.
Liang
,
A.
Sepulveda
,
J.
Bokor
,
G. P.
Carman
, and
R. N.
Candler
, “
Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion
,”
Sci. Rep
.,
8
(
1
),
5207
(
2018
).
22.
E.
Rapoport
and
G. S.
Beach
, “
Magneto-mechanical resonance of a single superparamagnetic microbead trapped by a magnetic domain wall
,”
J. Appl. Phys
111
(
7
),
07B310
(
2012
).
23.
P.
Chen
,
Y. Y.
Huang
,
K.
Hoshino
, and
J. X.
Zhang
, “
Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells
,”
Sci. Rep
.,
5
,
8745
(
2015
).
24.
J.
Crangle
and
G. M.
Goodman
, “
The magnetization of pure iron and nickel
,”
Proc. R. Soc. London.A. Math. Phys. Sci.
321
(
1547
),
477
491
(
1971
).
25.
E. F.
Kneller
and
R.
Hawig
, “
The exchange-spring magnet: A new material principle for permanent magnets
,”
IEEE Trans. Magn.
27
(
4
),
3588
3560
(
1991
).
26.
C.
Kittel
, “
On the Theory of Ferromagnetic Resonance Absorption
,”
Phys. Rev.
73
(
2
),
155
161
(
1948
).
27.
G. H. O.
Daalderop
,
P. J.
Kelly
, and
F. J. A.
Den Broeder
, “
Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers
,”
Phys. Rev. Lett.
68
(
5
),
682
685
(
1992
).
28.
S.
Mangin
,
D.
Ravelosona
,
J. A.
Katine
,
M. J.
Carey
,
B. D.
Terris
, and
E. E.
Fullerton
, “
Current-induced magnetization reversal in nanopillars with perpendicular anisotropy
,”
Nat. Mater.
5
(
3
),
210
215
(
2006
).
29.
M.
Gottwald
,
S.
Andrieu
,
F.
Gimbert
,
E.
Shipton
,
L.
Calmels
,
C.
Magen
,
E.
Snoeck
,
M.
Liberati
,
T.
Hauet
,
E.
Arenholz
,
S.
Mangin
, and
E. E.
Fullerton
, “
Co/Ni(111) superlattices studied by microscopy, x-ray absorption, and ab initio calculations
,”
Phys. Rev. B
86
(
1
), p.
014425
(
2012
).
30.
N.
Nakajima
,
T.
Koide
,
T.
Shidara
,
H.
Miyauchi
,
H.
Fukutani
,
A.
Fujimori
,
K.
Iio
,
T.
Katayama
,
M.
Nývlt
, and
Y.
Suzuki
, “
Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study
,”
Phys. Rev. Lett.
81
(
23
),
5229
5232
(
1998
).

Supplementary Material

You do not currently have access to this content.