MoS2 is known to show stubborn n-type behavior due to its intrinsic band structure and Fermi level pinning. Here, we investigate the combined effects of molecular doping and contact engineering on the transport and contact properties of monolayer (ML) MoS2 devices. Significant p-type (hole-transport) behavior was only observed for chemically doped MoS2 devices with high work function palladium (Pd) contacts, while MoS2 devices with low work function metal contacts made from titanium showed ambipolar behavior with electron transport favored even after prolonged p-doping treatment. ML MoS2 transistors with Pd contacts exhibit effective hole mobilities of (2.3 ± 0.7) cm2 V−1 S−1 and an on/off ratio exceeding 106. We also show that p-doping can help to improve electrical contacts in p-type field-effect transistors: relatively low contact resistances of (482 ± 40) kΩ μm and a Schottky barrier height of ≈156 meV were obtained for ML MoS2 transistors. To demonstrate the potential application of 2D-based complementary electronic devices, a MoS2 inverter based on pristine (n-type) and p-doped monolayer MoS2 was fabricated. This work presents a simple and effective route for contact engineering, which enables the exploration and development of high-efficiency 2D-based semiconductor devices.

1.
L.
Wang
,
I.
Meric
,
P.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L.
Campos
, and
D.
Muller
,
Science
342
(
6158
),
614
617
(
2013
).
2.
D. S.
Schulman
,
A. J.
Arnold
, and
S.
Das
,
Chem. Soc. Rev.
47
(
9
),
3037
3058
(
2018
).
3.
N. B.
Guros
,
S. T.
Le
,
S.
Zhang
,
B. A.
Sperling
,
J. B.
Klauda
,
C. A.
Richter
, and
A.
Balijepalli
,
ACS Appl. Mater. Interfaces
11
(
18
),
16683
16692
(
2019
).
4.
J.
Kang
,
W.
Liu
,
D.
Sarkar
,
D.
Jena
, and
K.
Banerjee
,
Phys. Rev. X
4
,
031005
(
2014
).
5.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
(
1
),
100
105
(
2013
).
6.
G.-S.
Kim
,
S.-H.
Kim
,
J.
Park
,
K. H.
Han
,
J.
Kim
, and
H.-Y.
Yu
,
ACS Nano
12
(
6
),
6292
6300
(
2018
).
7.
M. R.
Laskar
,
D. N.
Nath
,
L.
Ma
,
E. W.
Lee
,
C. H.
Lee
,
T.
Kent
,
Z.
Yang
,
R.
Mishra
,
M. A.
Roldan
, and
J.-C.
Idrobo
,
Appl. Phys. Lett.
104
(
9
),
092104
(
2014
).
8.
X.
Liu
,
D.
Qu
,
J.
Ryu
,
F.
Ahmed
,
Z.
Yang
,
D.
Lee
, and
W. J.
Yoo
,
Adv. Mater.
28
(
12
),
2345
2351
(
2016
).
9.
A.
Nipane
,
D.
Karmakar
,
N.
Kaushik
,
S.
Karande
, and
S.
Lodha
,
ACS Nano
10
(
2
),
2128
2137
(
2016
).
10.
A. T.
Neal
,
R.
Pachter
, and
S.
Mou
,
Appl. Phys. Lett.
110
(
19
),
193103
(
2017
).
11.
Y. J.
Zhang
,
J. T.
Ye
,
Y.
Yomogida
,
T.
Takenobu
, and
Y.
Iwasa
,
Nano Lett.
13
(
7
),
3023
3028
(
2013
).
12.
S.
Zhang
,
H. M.
Hill
,
K.
Moudgil
,
C. A.
Richter
,
A. R. H.
Walker
,
S.
Barlow
,
S. R.
Marder
,
C. A.
Hacker
, and
S. J.
Pookpanratana
,
Adv. Mater.
30
(
36
),
1802991
(
2018
).
13.
O. V.
Gusev
,
L. I.
Denisovich
,
M. G.
Peterleitner
,
A. Z.
Rubezhov
,
N. A.
Ustynyuk
, and
P. M.
Maitlis
,
J. Organomet. Chem.
452
(
1–2
),
219
222
(
1993
).
14.
F.
Bell
,
A.
Ledwith
, and
D.
Sherrington
,
J. Chem. Soc. C
1969
,
2719
2720
.
15.
J. R.
Hajzus
,
A. J.
Biacchi
,
S. T.
Le
,
C. A.
Richter
,
A. R. H.
Walker
, and
L. M.
Porter
,
Nanoscale
10
(
1
),
319
327
(
2018
).
16.
J.
Hölzl
and
F.
Schlulze
,
Springer Tracts in Modern Physics
(
Springer-Verlag
,
1979
).
17.
S. B.
Desai
,
S. R.
Madhvapathy
,
M.
Amani
,
D.
Kiriya
,
M.
Hettick
,
M.
Tosun
,
Y.
Zhou
,
M.
Dubey
,
J. W.
Ager
,
D.
Chrzan
, and
A.
Javey
,
Adv. Mater.
28
(
21
),
4053
4058
(
2016
).
18.
N. G.
Connelly
and
W. E.
Geiger
,
Chem. Rev.
96
(
2
),
877
910
(
1996
).
19.
C.
Kim
,
I.
Moon
,
D.
Lee
,
M. S.
Choi
,
F.
Ahmed
,
S.
Nam
,
Y.
Cho
,
H.-J.
Shin
,
S.
Park
, and
W. J.
Yoo
,
ACS Nano
11
(
2
),
1588
1596
(
2017
).
20.
Z.
Hu
,
Z.
Wu
,
C.
Han
,
J.
He
,
Z.
Ni
, and
W.
Chen
,
Chem. Soc. Rev.
47
(
9
),
3100
(
2018
).
21.
C.
Gong
,
L.
Colombo
,
R. M.
Wallace
, and
K.
Cho
,
Nano Lett.
14
(
4
),
1714
1720
(
2014
).
22.
D.
Liu
,
Y.
Guo
,
L.
Fang
, and
J.
Robertson
,
Appl. Phys. Lett.
103
(
18
),
183113
(
2013
).
23.
M.
Kröger
,
S.
Hamwi
,
J.
Meyer
,
T.
Riedl
,
W.
Kowalsky
, and
A.
Kahn
,
Org. Electron.
10
(
5
),
932
938
(
2009
).
24.
S.
Olthof
,
S.
Mehraeen
,
S. K.
Mohapatra
,
S.
Barlow
,
V.
Coropceanu
,
J.-L.
Brédas
,
S. R.
Marder
, and
A.
Kahn
,
Phys. Rev. Lett.
109
(
17
),
176601
(
2012
).
25.
B.
Van Zeghbroeck
,
Principles of Electronic Devices
(
University of Colorado
,
2011
).
26.
L.
Yang
,
K.
Majumdar
,
H.
Liu
,
Y.
Du
,
H.
Wu
,
M.
Hatzistergos
,
P.
Hung
,
R.
Tieckelmann
,
W.
Tsai
, and
C.
Hobbs
,
Nano Lett.
14
(
11
),
6275
6280
(
2014
).
27.
A.
Tarasov
,
S.
Zhang
,
M.-Y.
Tsai
,
P. M.
Campbell
,
S.
Graham
,
S.
Barlow
,
S. R.
Marder
, and
E. M.
Vogel
,
Adv. Mater.
27
(
7
),
1175
1181
(
2015
).
28.
S.-L.
Li
,
K.
Komatsu
,
S.
Nakaharai
,
Y.-F.
Lin
,
M.
Yamamoto
,
X.
Duan
, and
K.
Tsukagoshi
,
ACS Nano
8
(
12
),
12836
12842
(
2014
).
29.
J.
Appenzeller
,
M.
Radosavljević
,
J.
Knoch
, and
P.
Avouris
,
Phys. Rev. Lett.
92
(
4
),
048301
(
2004
).
30.
J.
Appenzeller
,
J.
Knoch
,
V.
Derycke
,
R.
Martel
,
S.
Wind
, and
P.
Avouris
,
Phys. Rev. Lett.
89
(
12
),
126801
(
2002
).
31.
The ION
/OFF and VT values are extracted from the hole side for 10 min and 1 h p-doped MoS2 FETs with Pd contacts.

Supplementary Material

You do not currently have access to this content.