The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability, devices need to operate at cryogenic temperatures. In this work, we report on a device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to ΔT = 60 K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures Tbath < 2 K and enables studies in the linear (ΔTTmolecule) and nonlinear (ΔTTmolecule) thermoelectric transport regimes.

1.
H.
Valkenier
,
C. M.
Gudon
,
T.
Markussen
,
K. S.
Thygesen
,
S. J.
van der Molen
, and
J. C.
Hummelen
, “
Cross-conjugation and quantum interference: A general correlation?
,”
Phys. Chem. Chem. Phys.
16
,
653
662
(
2014
).
2.
C. M.
Finch
,
V. M.
García-Suárez
, and
C. J.
Lambert
, “
Giant thermopower and figure of merit in single-molecule devices
,”
Phys. Rev. B
79
,
033405
(
2009
).
3.
P.
Gehring
,
J. M.
Thijssen
, and
H. S. J.
van der Zant
, “
Single-molecule quantum-transport phenomena in break junctions
,”
Nat. Rev. Phys.
1
,
381
396
(
2019
).
4.
J.
Koch
,
F.
von Oppen
, and
A. V.
Andreev
, “
Theory of the franck-condon blockade regime
,”
Phys. Rev. B
74
,
205438
(
2006
).
5.
W.
Liang
,
M. P.
Shores
,
M.
Bockrath
,
J. R.
Long
, and
H.
Park
, “
Kondo resonance in a single-molecule transistor
,”
Nature
417
,
725
729
(
2002
).
6.
J.
de Bruijckere
,
P.
Gehring
,
M.
Palacios-Corella
,
M.
Clemente-León
,
E.
Coronado
,
J.
Paaske
,
P.
Hedegård
, and
H. S. J.
van der Zant
, “
Ground-state spin blockade in a single-molecule junction
,”
Phys. Rev. Lett.
122
,
197701
(
2019
).
7.
J.
Koch
,
F.
von Oppen
,
Y.
Oreg
, and
E.
Sela
, “
Thermopower of single-molecule devices
,”
Phys. Rev. B
70
,
195107
(
2004
).
8.
J. K.
Sowa
,
J. A.
Mol
, and
E. M.
Gauger
, “
Marcus theory of thermoelectricity in molecular junctions
,”
J. Phys. Chem. C
123
,
4103
4108
(
2019
).
9.
R.-Q.
Wang
,
L.
Sheng
,
R.
Shen
,
B.
Wang
, and
D. Y.
Xing
, “
Thermoelectric effect in single-molecule-magnet junctions
,”
Phys. Rev. Lett.
105
,
057202
(
2010
).
10.
T. A.
Costi
and
V.
Zlatić
, “
Thermoelectric transport through strongly correlated quantum dots
,”
Phys. Rev. B
81
,
235127
(
2010
).
11.
P.
Gehring
,
A.
Harzheim
,
J.
Spice
,
Y.
Sheng
,
G.
Rogers
,
C.
Evangeli
,
A.
Mishra
,
B. J.
Robinson
,
K.
Porfyrakis
,
J. H.
Warner
,
O. V.
Kolosov
,
G. A. D.
Briggs
, and
J. A.
Mol
, “
Field-effect control of graphenefullerene thermoelectric nanodevices
,”
Nano Lett.
17
,
7055
7061
(
2017
).
12.
Y.
Kim
,
W.
Jeong
,
K.
Kim
,
W.
Lee
, and
P.
Reddy
, “
Electrostatic control of thermoelectricity in molecular junctions
,”
Nat. Nanotechnol.
9
,
881
885
(
2014
).
13.
J.
Moon
,
J.-H.
Kim
,
Z. C.
Chen
,
J.
Xiang
, and
R.
Chen
, “
Gate-modulated thermoelectric power factor of hole gas in gesi coreshell nanowires
,”
Nano Lett.
13
,
1196
1202
(
2013
).
14.
T. A.
Su
,
M.
Neupane
,
M. L.
Steigerwald
,
L.
Venkataraman
, and
C.
Nuckolls
, “
Chemical principles of single-molecule electronics
,”
Nat. Rev. Mater.
1
,
16002
(
2016
).
15.
K.
ONeill
,
E. A.
Osorio
, and
H. S. J.
van der Zant
, “
Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes
,”
Appl. Phys. Lett.
90
,
133109
(
2007
).
16.
P.
Gehring
,
H.
Sadeghi
,
S.
Sangtarash
,
C. S.
Lau
,
J.
Liu
,
A.
Ardavan
,
J. H.
Warner
,
C. J.
Lambert
,
G. A. D.
Briggs
, and
J. A.
Mol
, “
Quantum interference in graphene nanoconstrictions
,”
Nano Lett.
16
,
4210
4216
(
2016
).
17.
S.
Nazarpour
,
A.
Cirera
, and
M.
Varela
, “
Material properties of aupd thin alloy films
,”
Thin Solid Films
518
,
5715–5719
(
2010
).
18.
J. G.
Gluschke
,
S.
Fahlvik Svensson
,
C.
Thelander
, and
H.
Linke
,
Nanotechnology
25
,
385704
(
2014
).
19.
H.
Park
,
A. K. L.
Lim
,
A. P.
Alivisatos
,
J.
Park
, and
P. L.
McEuen
, “
Fabrication of metallic electrodes with nanometer separation by electromigration
,”
Appl. Phys. Lett.
75
,
301
303
(
1999
).
20.
M. E.
Pumarol
,
M. C.
Rosamond
,
P.
Tovee
,
M. C.
Petty
,
D. A.
Zeze
,
V.
Falko
, and
O. V.
Kolosov
, “
Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures
,”
Nano Lett.
12
,
2906
2911
(
2012
).
21.
P.
Tovee
,
M.
Pumarol
,
D.
Zeze
,
K.
Kjoller
, and
O.
Kolosov
, “
Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials
,”
J. Appl. Phys.
112
,
114317
(
2012
).
22.
G.
Hwang
,
J.
Chung
, and
O.
Kwon
, “
Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement
,”
Rev. Sci. Instrum.
85
,
114901
(
2014
).
23.
F.
Menges
,
P.
Mensch
,
H.
Schmid
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
, “
Temperature mapping of operating nanoscale devices by scanning probe thermometry
,”
Nat. Commun.
7
,
10874
(
2016
).
24.
A.
Harzheim
,
J.
Spiece
,
C.
Evangeli
,
E.
McCann
,
V.
Falko
,
Y.
Sheng
,
J. H.
Warner
,
G. A. D.
Briggs
,
J. A.
Mol
,
P.
Gehring
, and
O. V.
Kolosov
, “
Geometrically enhanced thermoelectric effects in graphene nanoconstrictions
,”
Nano Lett.
18
,
7719
7725
(
2018
).
25.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
, “
Thermal transport measurements of individual multiwalled nanotubes
,”
Phys. Rev. Lett.
87
,
215502
(
2001
).
26.
J. P.
Small
,
L.
Shi
, and
P.
Kim
, “
Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes
,”
Solid State Commun.
127
,
181
186
(
2003
).
27.
J. P.
Small
,
K. M.
Perez
, and
P.
Kim
, “
Modulation of thermoelectric power of individual carbon nanotubes
,”
Phys. Rev. Lett.
91
,
256801
(
2003
).
28.
E.
Burzurí
,
R.
Gaudenzi
, and
H. S. J.
van der Zant
, “
Observing magnetic anisotropy in electronic transport through individual single-molecule magnets
,”
J. Phys.: Condens. Matter
27
,
113202
(
2015
).
29.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
, “
Spins in few-electron quantum dots
,”
Rev. Mod. Phys.
79
,
1217
1265
(
2007
).
30.
E. A.
Osorio
,
T.
Bjørnholm
,
J.-M.
Lehn
,
M.
Ruben
, and
H. S. J.
van der Zant
, “
Single-molecule transport in three-terminal devices
,”
J. Phys.: Condens. Matter
20
,
374121
(
2008
).
31.
P.
Gehring
,
J. K.
Sowa
,
J.
Cremers
,
Q.
Wu
,
H.
Sadeghi
,
Y.
Sheng
,
J. H.
Warner
,
C. J.
Lambert
,
G. A. D.
Briggs
, and
J. A.
Mol
, “
Distinguishing lead and molecule states in graphene-based single-electron transistors
,”
ACS Nano
11
,
5325
5331
(
2017
).
32.
L.
Rincón-García
,
C.
Evangeli
,
G.
Rubio-Bollinger
, and
N.
Agraït
, “
Thermopower measurements in molecular junctions
,”
Chem. Soc. Rev.
45
,
4285
4306
(
2016
).
33.
Y. M.
Zuev
, “
Nanoscale thermoelectric energy conversion
,” PhD thesis (
Columbia University
,
2011
).
34.
D.
Sánchez
and
R.
López
, “
Scattering theory of nonlinear thermoelectric transport
,”
Phys. Rev. Lett.
110
,
026804
(
2013
).
35.
G.
Karotsis
,
M.
Evangelisti
,
S.
Dalgarno
, and
E.
Brechin
, “
A calix[4]arene 3d/4f magnetic cooler
,”
Angew. Chem. Int. Ed.
48
,
9928
9931
(
2009
).

Supplementary Material

You do not currently have access to this content.