We report the observation of substitutional silicon atoms in single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning transmission electron microscopy. The images reveal silicon atoms exclusively filling boron vacancies. Density functional theory is used to study the energetics, structure, and properties of the experimentally observed structure. The formation energies reveal SiB+1 as the most stable configuration. In this case, the silicon atom elevates by 0.66 Å out of the lattice with unoccupied defect levels in the electronic bandgap above the Fermi level. Our results unequivocally show that heteroatoms can be incorporated into the h-BN lattice opening the way for applications ranging from single-atom catalysis to atomically precise magnetic structures.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
2.
D.
Pacilé
,
J. C.
Meyer
,
C. O.
Girit
, and
A.
Zettl
, “
The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes
,”
Appl. Phys. Lett.
92
,
133107
(
2008
).
3.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
712
(
2012
).
4.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
, “
Hexagonal boron nitride is an indirect bandgap semiconductor
,”
Nat. Photonics
10
,
262
266
(
2016
).
5.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
6.
F.
Oba
and
Y.
Kumagai
, “
Design and exploration of semiconductors from first principles: A review of recent advances
,”
Appl. Phys. Express
11
,
060101
(
2018
).
7.
M. D.
Kapetanakis
,
M. P.
Oxley
,
W.
Zhou
,
S. J.
Pennycook
,
J.-C.
Idrobo
, and
S. T.
Pantelides
, “
Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene
,”
Phys. Rev. B
94
,
155449
(
2016
).
8.
J.
Kotakoski
,
A. V.
Krasheninnikov
,
U.
Kaiser
, and
J. C.
Meyer
, “
From point defects in graphene to two-dimensional amorphous carbon
,”
Phys. Rev. Lett.
106
,
105505
(
2011
).
9.
Z.
Hu
,
Z.
Wu
,
C.
Han
,
J.
He
,
Z.
Ni
, and
W.
Chen
, “
Two-dimensional transition metal dichalcogenides: Interface and defect engineering
,”
Chem. Soc. Rev.
47
,
3100
3128
(
2018
).
10.
W.
Zhou
,
M. D.
Kapetanakis
,
M. P.
Prange
,
S. T.
Pantelides
,
S. J.
Pennycook
, and
J.-C.
Idrobo
, “
Direct determination of the chemical bonding of individual impurities in graphene
,”
Phys. Rev. Lett.
109
,
206803
(
2012
).
11.
Q. M.
Ramasse
,
C. R.
Seabourne
,
D.-M.
Kepaptsoglou
,
R.
Zan
,
U.
Bangert
, and
A. J.
Scott
, “
Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy
,”
Nano Lett.
13
,
4989
4995
(
2013
).
12.
R.
Jalili
,
D.
Esrafilzadeh
,
S. H.
Aboutalebi
,
Y. M.
Sabri
,
A. E.
Kandjani
,
S. K.
Bhargava
,
E.
Della Gaspera
,
T. R.
Gengenbach
,
A.
Walker
,
Y.
Chao
,
C.
Wang
,
H.
Alimadadi
,
D. R. G.
Mitchell
,
D. L.
Officer
,
D. R.
MacFarlane
, and
G. G.
Wallace
, “
Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance
,”
Nat. Commun.
9
,
5070
(
2018
).
13.
O. L.
Krivanek
,
M. F.
Chisholm
,
V.
Nicolosi
,
T. J.
Pennycook
,
G. J.
Corbin
,
N.
Dellby
,
M. F.
Murfitt
,
C. S.
Own
,
Z. S.
Szilagyi
,
M. P.
Oxley
,
S. T.
Pantelides
, and
S. J.
Pennycook
, “
Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy
,”
Nature
464
,
571
574
(
2010
).
14.
J. C.
Meyer
,
A.
Chuvilin
,
G.
Algara-Siller
,
J.
Biskupek
, and
U.
Kaiser
, “
Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes
,”
Nano Lett.
9
,
2683
2689
(
2009
).
15.
D. Y.
Kim
,
H.
Jeong
,
J.
Kim
,
N.
Han
, and
J. K.
Kim
, “
Defect-mediated in-plane electrical conduction in few-layer sp2-hybridized boron nitrides
,”
ACS Appl. Mater. Interfaces
10
,
17287
17294
(
2018
).
16.
H.
Murata
,
T.
Taniguchi
,
S.
Hishita
,
T.
Yamamoto
,
F.
Oba
, and
I.
Tanaka
, “
Local environment of silicon in cubic boron nitride
,”
J. Appl. Phys.
114
,
233502
(
2013
).
17.
S.
Majety
,
T. C.
Doan
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Electrical transport properties of Si-doped hexagonal boron nitride epilayers
,”
AIP Adv.
3
,
122116
(
2013
).
18.
A.
Sajid
,
J. R.
Reimers
, and
M. J.
Ford
, “
Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation
,”
Phys. Rev. B
97
,
064101
(
2018
).
19.
S.
Tang
and
Z.
Cao
, “
Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: Insight from density functional calculations
,”
Phys. Chem. Chem. Phys.
12
,
2313
2320
(
2010
).
20.
P. U.
Asshoff
,
J. L.
Sambricio
,
S.
Slizovskiy
,
A. P.
Rooney
,
T.
Taniguchi
,
K.
Watanabe
,
S. J.
Haigh
,
V.
Fal'ko
,
I. V.
Grigorieva
, and
I. J.
Vera-Marun
, “
Magnetoresistance in Co-hBN-NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers
,”
Nano Lett.
18
,
6954
6960
(
2018
).
21.
M.
Wang
,
S.
Tang
,
J.
Ren
,
B.
Wang
,
Y.
Han
, and
Y.
Dai
, “
Magnetism in boron nitride monolayer induced by cobalt or nickel doping
,”
J. Supercond. Novel Magn.
31
,
1559
1565
(
2018
).
22.
Y.-J.
Liu
,
B.
Gao
,
D.
Xu
,
H.-M.
Wang
, and
J.-X.
Zhao
, “
Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity
,”
Phys. Lett. A
378
,
2989
2994
(
2014
).
23.
R. E.
Mapasha
,
E.
Igumbor
, and
N.
Chetty
, “
A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer
,”
J. Phys.: Conf. Ser.
759
,
012042
(
2016
).
24.
R. E.
Mapasha
,
M. P.
Molepo
,
R. C.
Andrew
, and
N.
Chetty
, “
Defect charge states in Si doped hexagonal boron-nitride monolayer
,”
J. Phys.: Con. Mater.
28
,
055501
(
2016
).
25.
C.
Jin
,
F.
Lin
,
K.
Suenaga
, and
S.
Iijima
, “
Fabrication of a freestanding boron nitride single layer and its defect assignments
,”
Phys. Rev. Lett.
102
,
195505
(
2009
).
26.
J.
Kotakoski
,
C. H.
Jin
,
O.
Lehtinen
,
K.
Suenaga
, and
A. V.
Krasheninnikov
, “
Electron knock-on damage in hexagonal boron nitride monolayers
,”
Phys. Rev. B
82
,
113404
(
2010
).
27.
O. L.
Krivanek
,
G. J.
Corbin
,
N.
Dellby
,
B. F.
Elston
,
R. J.
Keyse
,
M. F.
Murfitt
,
C. S.
Own
,
Z. S.
Szilagyi
, and
J. W.
Woodruff
, “
An electron microscope for the aberration-corrected era
,”
Ultramicroscopy
108
,
179
195
(
2008
).
28.
G. T.
Leuthner
,
S.
Hummel
,
C.
Mangler
,
T. J.
Pennycook
,
T.
Susi
,
J. C.
Meyer
, and
J.
Kotakoski
, “
Scanning transmission electron microscopy under controlled low-pressure atmospheres
,”
Ultramicroscopy
203
,
76
81
(
2019
).
29.
C.
Koch
, “
Determination of core structure periodicity and point defect density along dislocations
,” Ph.D. thesis (
Arizona State University
,
2002
).
30.
H.
Inani
,
K.
Mustonen
,
A.
Markevich
,
E.-X.
Ding
,
M.
Tripathi
,
A.
Hussain
,
C.
Mangler
,
E. I.
Kauppinen
,
T.
Susi
, and
J.
Kotakoski
, “
Silicon substitution in nanotubes and graphene via intermittent vacancies
,”
J. Phys. Chem. C
123
,
13136
13140
(
2019
).
31.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
33.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
34.
H.-P.
Komsa
,
N.
Berseneva
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
, “
Charged point defects in the flatland: Accurate formation energy calculations in two-dimensional materials
,”
Phys. Rev. X
4
,
031044
(
2014
).
35.
H.-P.
Komsa
,
N.
Berseneva
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
, “
Erratum: Charged point defects in the flatland: Accurate formation energy calculations in two-dimensional materials, [Phys. Rev. X 4, 031044 (2014)]
,”
Phys. Rev. X
8
,
039902
(
2018
).
36.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
37.
N.
Berseneva
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
, “
Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations
,”
Phys. Rev. Lett.
107
,
035501
(
2011
).
38.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
,
224106
(
2006
).
39.
B.
Huang
and
S.-H.
Wei
, “
Comment on: Mechanisms of postsynthesis doping of boron nitride nanostructures with carbon from first-principles simulations
,”
Phys. Rev. Lett.
107
,
239601
(
2011
).
40.
B.
Huang
and
H.
Lee
, “
Defect and impurity properties of hexagonal boron nitride: A first-principles calculation
,”
Phys. Rev. B
86
,
245406
(
2012
).
41.
C. G.
Van de Walle
,
P. J. H.
Denteneer
,
Y.
Bar-Yam
, and
S. T.
Pantelides
, “
Theory of hydrogen diffusion and reactions in crystalline silicon
,”
Phys. Rev. B
39
,
10791
10808
(
1989
).
42.
M. J.
van Setten
,
M. A.
Uijttewaal
,
G. A.
de Wijs
, and
R. A.
de Groot
, “
Thermodynamic stability of boron: The role of defects and zero point motion
,”
J. Am. Chem. Soc.
129
,
2458
2465
(
2007
).
43.
R.
Laskowski
,
P.
Blaha
, and
K.
Schwarz
, “
Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study
,”
Phys. Rev. B
78
,
045409
(
2008
).
44.
Q.
Zhang
,
J.
Yu
,
P.
Ebert
,
C.
Zhang
,
C.-R.
Pan
,
M.-Y.
Chou
,
C.-K.
Shih
,
C.
Zeng
, and
S.
Yuan
, “
Tuning band gap and work function modulations in monolayer hBN/Cu(111) heterostructures with Moiré patterns
,”
ACS Nano
12
,
9355
9362
(
2018
).
45.
X.
Wei
,
D.-M.
Tang
,
Q.
Chen
,
Y.
Bando
, and
D.
Golberg
, “
Local coulomb explosion of boron nitride nanotubes under electron beam irradiation
,”
ACS Nano
7
,
3491
3497
(
2013
).
46.
C.
Hofer
,
V.
Skakalova
,
M. R. A.
Monazam
,
C.
Mangler
,
J.
Kotakoski
,
T.
Susi
, and
J. C.
Meyer
, “
Direct visualization of the 3D structure of silicon impurities in graphene
,”
Appl. Phys. Lett.
114
,
053102
(
2019
).
47.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
48.
T.
Susi
,
J.
Kotakoski
,
D.
Kepaptsoglou
,
C.
Mangler
,
T. C.
Lovejoy
,
O. L.
Krivanek
,
R.
Zan
,
U.
Bangert
,
P.
Ayala
,
J. C.
Meyer
, and
Q.
Ramasse
, “
Silicon–carbon bond inversions driven by 60-keV electrons in graphene
,”
Phys. Rev. Lett.
113
,
115501
(
2014
).
49.
T.
Susi
,
T. P.
Hardcastle
,
H.
Hofsäss
,
A.
Mittelberger
,
T. J.
Pennycook
,
C.
Mangler
,
R.
Drummond-Brydson
,
A. J.
Scott
,
J. C.
Meyer
, and
J.
Kotakoski
, “
Single-atom spectroscopy of phosphorus dopants implanted into graphene
,”
2D Mater.
4
,
021013
(
2017
).
50.
M.
Tripathi
,
A.
Markevich
,
R.
Böttger
,
S.
Facsko
,
E.
Besley
,
J.
Kotakoski
, and
T.
Susi
, “
Implanting germanium into graphene
,”
ACS Nano
12
,
4641
4647
(
2018
).

Supplementary Material

You do not currently have access to this content.