Frost formation and ice accretion are major problems for a plethora of industries. Common defrosting and deicing techniques utilize energy-intensive mechanical actuation to dislodge ice/frost or heating methods to melt ice/frost from surfaces. Here, we develop an ultraefficient method to defrost/deice surfaces by spatially and temporally localizing thermal energy at the substrate-ice/frost interface. To remove ice/frost efficiently, it is beneficial only to melt the interfacial layer adhering the ice/frost to the solid surface by using a localized “pulse” of heat, allowing gravity or gas shear in conjunction with the ultrathin lubricating melt water layer to remove the ice/frost. To probe the physics of pulse defrosting, we first developed a transient numerical heat transfer model. Experimental validation of the model was achieved via pulse (100 ms) joule heating of indium tin oxide on glass samples. Utilizing transient heat fluxes ranging from 10 to 100 W/cm2, spontaneous melting of the interfacial ice/frost layer was achieved, leading to rapid ice removal. We employed our validated model to outline design guidelines for pulse defrosting applications, showing <1% of the energy and <0.01% of the defrosting time needed when compared to conventional thermal-based defrosting methods.

1.
E.
Moallem
,
L.
Cremaschi
,
D. E.
Fisher
, and
S.
Padhmanabhan
,
Exp. Therm. Fluid Sci.
39
,
176
(
2012
);
Y. S.
Chang
,
J. Therm. Sci. Technol.
6
(
1
),
123
(
2011
);
Y.
Xia
,
Y.
Zhong
,
P. S.
Hrnjak
, and
A. M.
Jacobi
,
Int. J. Refrig.
29
(
7
),
1066
(
2006
).
2.
T. T.
Lankford
,
Aircraft icing : a pilot's guide
(
McGraw-Hill
,
New York
,
2000
).
3.
O.
Parent
and
A.
Ilinca
,
Cold Reg. Sci. Technol.
65
(
1
),
88
(
2011
).
4.
M.
Farzaneh
,
Atmospheric Icing of Power Networks
(
Springer Science & Business Media
,
2008
).
5.
C. P.
Tso
,
Y. W.
Wong
,
P. G.
Jolly
, and
S. M.
Ng
,
Int. J. Refrig.
24
(
6
),
544
(
2001
);
D. T.
Reindl
,
T. B.
Jekel
, and
J. S.
Elleson
,
IRC, Industrial Refrigeration Consortium
(
The University Wisconsin
,
Madison
,
2005
);
Z.
Liu
,
G.
Tang
, and
F.
Zhao
,
Appl. Therm. Eng.
23
(
6
),
675
(
2003
);
J.-S.
Byun
,
J.
Lee
, and
C.-D.
Jeon
,
Int. J. Refrig.
31
(
2
),
328
(
2008
);
D. M.
Dart
,
ASHRAE Trans.,
1
,
5
(
1959
);
G.
Mader
and
C.
Thybo
,
Appl. Therm. Eng.
39
,
78
(
2012
);
V. C.
Mei
,
R. E.
Domitrovic
,
F. C.
Chen
, and
J. K.
Kilpatrick
,
ASHRAE Trans.
108
,
452
(
2002
);
K.
Kwak
and
C.
Bai
,
Appl. Therm. Eng.
30
(
6–7
),
539
(
2010
).
6.
Y.
Ding
,
G.
Ma
,
Q.
Chai
, and
Y.
Jiang
,
Int. J. Refrig.
27
(
6
),
671
(
2004
);
M.
Qu
,
L.
Xia
,
S.
Deng
, and
Y.
Jiang
,
Appl. Energy
97
,
327
(
2012
).
7.
W. F.
Stoecker
,
J. J.
Lux
, and
R. J.
Kooy
,
ASHRAE Trans.
25
(
5
),
66
(
1983
).
8.
D. H.
Niederer
,
ASHRAE Trans.
82
,
467
(
1976
).
9.
M.
Farzaneh
,
C.
Volat
, and
A.
Leblond
,
Atmospheric Icing of Power Networks
(
Springer
,
Netherlands
,
2008
), p.
229
;
A.-R. O.
Raji
,
S.
Salters
,
E. L. G.
Samuel
,
Y.
Zhu
,
V.
Volman
, and
J. M.
Tour
,
ACS Appl. Mater. Interfaces
6
(
19
),
16661
(
2014
);
[PubMed]
V.
Volman
,
J. M.
Tour
,
Y.
Zhu
, and
A.-R. O.
Raji
, paper presented at
the 2014 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON)
,
2014
;
M.
Elsharkawy
,
D.
Tortorella
,
S.
Kapatral
, and
C. M.
Megaridis
,
Langmuir
32
(
17
),
4278
(
2016
).
[PubMed]
10.
G. C.
Botura
,
D.
Sweet
, and
D.
Flosdorf
,
Development and Demonstration of Low Power Electrothermal De-Icing System
(
American Institute of Aeronautics and Astronautics
,
2005
).
11.
V. F.
Petrenko
,
C. R.
Sullivan
,
V.
Kozlyuk
,
F. V.
Petrenko
, and
V.
Veerasamy
,
Cold Reg. Sci. Technol.
65
(
1
),
70
(
2011
).
12.
N.
Shamsundar
and
E. M.
Sparrow
,
J. Heat Transfer
97
,
333
(
1975
).
13.
D. W.
Hahn
and
M. N.
Ozisik
,
Heat Conduction
(
John Wiley & Sons
,
2012
).
14.
J. D.
Mccrumm
and
E. H.
Piesset
, U.S. patent 2,507,036 (23 August
1948
);
K.
Im
,
K.
Cho
,
J.
Kim
, and
S.
Kim
,
Thin Solid Films
518
(
14
),
3960
(
2010
);
Y.
Park
,
V.
Choong
,
Y.
Gao
,
B. R.
Hsieh
, and
C. W.
Tang
,
Appl. Phys. Lett.
68
(
19
),
2699
(
1996
).
15.
S.
Chavan
,
Y.
Gurumukhi
,
S.
Sett
,
K.
Boyina
,
S.
Ramesh
,
P.
Sokalski
,
K.
Fortelka
,
M.
Lira
,
D.
Park
,
J.-Y.
Chen
,
S.
Hegde
, and
N.
Miljkovic
, “Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces” (unpublished).

Supplementary Material

You do not currently have access to this content.