Electrical control over the energy exchange between exciton states mediated by cavity-polaritons at room temperature is demonstrated. A field-effect device, based on a monolayer of WS2, is built on the bottom metallic mirror of a tuneable Fabry–Pérot microcavity; on the top mirror, a monolayer of MoS2 is placed leaving a controllable gap of ∼1 μm between the top and bottom semiconductors. This device is specially designed for the multiple hybridization of microcavity modes with the two exciton species supported by WS2 and MoS2, allowing for polariton-mediated exciton energy exchange. It is further shown that the tuning of the free carrier density in the WS2 film through field-effect gating leads to strong modulation of the Rabi splitting that modifies the excitonic and photonic nature of exciton-polaritons. Electrical control of polaritonic devices may lead to technological applications using switchable quantum states.

1.
M.
Hertzog
,
M.
Wang
,
J.
Mony
, and
K.
Börjesson
, “
Strong light–matter interactions: A new direction within chemistry
,”
Chem. Soc. Rev.
48
,
937
961
(
2019
).
2.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
3.
J. D.
Plumhof
,
T.
Stöferle
,
L.
Mai
,
U.
Scherf
, and
R. F.
Mahrt
, “
Room-temperature Bose—Einstein condensation of cavity exciton–polaritons in a polymer
,”
Nat. Mater.
13
,
247
252
(
2014
).
4.
S.
Christopoulos
,
G. B. H.
Von Högersthal
,
A. J. D.
Grundy
,
P. G.
Lagoudakis
,
A. V.
Kavokin
,
J. J.
Baumberg
,
G.
Christmann
,
R.
Butté
,
E.
Feltin
,
J. F.
Carlin
, and
N.
Grandjean
, “
Room-temperature polariton lasing in semiconductor microcavities
,”
Phys. Rev. Lett.
98
,
126405
(
2007
).
5.
S.
Klembt
,
T. H.
Harder
,
O. A.
Egorov
,
K.
Winkler
,
R.
Ge
,
M. A.
Bandres
,
M.
Emmerling
,
L.
Worschech
,
T. C. H.
Liew
,
M.
Segev
,
C.
Schneider
, and
S.
Höfling
, “
Exciton-polariton topological insulator
,”
Nature
562
,
552
556
(
2018
).
6.
A.
Amo
,
J.
Lefrère
,
S.
Pigeon
,
C.
Adrados
,
C.
Ciuti
,
I.
Carusotto
,
R.
Houdré
,
E.
Giacobino
, and
A.
Bramati
, “
Superfluidity of polaritons in semiconductor microcavities
,”
Nat. Phys.
5
,
805
810
(
2009
).
7.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
719
(
2014
).
8.
X.
Zhong
,
T.
Chervy
,
S.
Wang
,
J.
George
,
A.
Thomas
,
J. A.
Hutchison
,
E.
Devaux
,
C.
Genet
, and
T. W.
Ebbesen
, “
Non-radiative energy transfer mediated by hybrid light-matter states
,”
Angew. Chem.: Int. Ed.
55
,
6202
6206
(
2016
).
9.
K.
Georgiou
,
P.
Michetti
,
L.
Gai
,
M.
Cavazzini
,
Z.
Shen
, and
D. G.
Lidzey
, “
Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity
,”
ACS Photonics
5
,
258
266
(
2018
).
10.
D. G.
Lidzey
,
D. D. C.
Bradley
,
A.
Armitage
,
S.
Walker
, and
M. S.
Skolnick
, “
Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities
,”
Science
288
,
1620
1623
(
2000
).
11.
X.
Zhong
,
T.
Chervy
,
L.
Zhang
,
A.
Thomas
,
J.
George
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Energy transfer between spatially separated entangled molecules
,”
Angew. Chem. Int. Ed.
56
,
9034
9038
(
2017
).
12.
P.
Andrew
and
W. L.
Barnes
, “
Forster energy transfer in an optical microcavity
,”
Science
290
,
785
788
(
2000
).
13.
M.
Du
,
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
Z.
Hu
,
V. M.
Menon
, and
J.
Yuen-Zhou
, “
Theory for polariton-assisted remote energy transfer
,”
Chem. Sci.
9
,
6659
6669
(
2018
).
14.
L. C.
Flatten
,
D. M.
Coles
,
Z.
He
,
D. G.
Lidzey
,
R. A.
Taylor
,
J. H.
Warner
, and
J. M.
Smith
, “
Electrically tunable organic—inorganic hybrid polaritons with monolayer WS2
,”
Nat. Commun.
8
,
14097
(
2017
).
15.
M.
Waldherr
,
N.
Lundt
,
M.
Klaas
,
S.
Betzold
,
M.
Wurdack
,
V.
Baumann
,
E.
Estrecho
,
A.
Nalitov
,
E.
Cherotchenko
,
H.
Cai
,
E. A.
Ostrovskaya
,
A. V.
Kavokin
,
S.
Tongay
,
S.
Klembt
,
S.
Höfling
, and
C.
Schneider
, “
Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity
,”
Nat. Commun.
9
,
3286
(
2018
).
16.
N.
Lundt
,
S.
Klembt
,
E.
Cherotchenko
,
S.
Betzold
,
O.
Iff
,
A. V.
Nalitov
,
M.
Klaas
,
C. P.
Dietrich
,
A. V.
Kavokin
,
S.
Höfling
, and
C.
Schneider
, “
Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer
,”
Nat. Commun.
7
,
13328
(
2016
).
17.
Y.-J.
Chen
,
J. D.
Cain
,
T. K.
Stanev
,
V. P.
Dravid
, and
N. P.
Stern
, “
Valley-polarized exciton—polaritons in a monolayer semiconductor
,”
Nat. Photonics
11
,
431
435
(
2017
).
18.
L. C.
Flatten
,
Z.
He
,
D. M.
Coles
,
A. A. P.
Trichet
,
A. W.
Powell
,
R. A.
Taylor
,
J. H.
Warner
, and
J. M.
Smith
, “
Room-temperature exciton-polaritons with two-dimensional WS2
,”
Sci. Rep.
6
,
33134
(
2016
).
19.
Z.
Sun
,
J.
Gu
,
A.
Ghazaryan
,
Z.
Shotan
,
C. R.
Considine
,
M.
Dollar
,
B.
Chakraborty
,
X.
Liu
,
P.
Ghaemi
,
S.
Kéna-Cohen
, and
V. M.
Menon
, “
Optical control of room-temperature valley polaritons
,”
Nat. Photonics
11
,
491
496
(
2017
).
20.
S.
Wang
,
S.
Li
,
T.
Chervy
,
A.
Shalabney
,
S.
Azzini
,
E.
Orgiu
,
J. A.
Hutchison
,
C.
Genet
,
P.
Samorì
, and
T. W.
Ebbesen
, “
Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature
,”
Nano Lett.
16
,
4368
4374
(
2016
).
21.
Y.
Li
,
A.
Chernikov
,
X.
Zhang
,
A.
Rigosi
,
H. M.
Hill
,
A. M.
van der Zande
,
D. A.
Chenet
,
E.-M.
Shih
,
J.
Hone
, and
T. F.
Heinz
, “
Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2
,”
Phys. Rev. B
90
,
205422
(
2014
).
22.
B.
Chakraborty
,
J.
Gu
,
Z.
Sun
,
M.
Khatoniar
,
R.
Bushati
,
A. L.
Boehmke
,
R.
Koots
, and
V. M.
Menon
, “
Control of strong light–matter interaction in monolayer WS2 through electric field gating
,”
Nano Lett.
18
,
6455
6460
(
2018
).
23.
H. A.
Fernandez
,
F.
Withers
,
S.
Russo
, and
W. L.
Barnes
, “
Electrically tuneable exciton polaritons through free electron doping in monolayer WS2 microcavities
,”
Adv. Opt. Mater.
2019
,
1900484
.
24.
X.
Liu
,
T.
Galfsky
,
Z.
Sun
,
F.
Xia
,
E. C.
Lin
,
Y. H.
Lee
,
S.
Kéna-Cohen
, and
V. M.
Menon
, “
Strong light-matter coupling in two-dimensional atomic crystals
,”
Nat. Photonics
9
,
30
34
(
2015
).
25.
M.
Sidler
,
P.
Back
,
O.
Cotlet
,
A.
Srivastava
,
T.
Fink
,
M.
Kroner
,
E.
Demler
, and
A.
Imamoglu
, “
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors
,”
Nat. Phys.
13
,
255
261
(
2017
).
26.
S.
Pau
,
G.
Björk
,
J.
Jacobson
,
H.
Cao
, and
Y.
Yamamoto
, “
Microcavity exciton-polariton splitting in the linear regime
,”
Phys. Rev. B
51
,
14437
14447
(
1995
).
27.
V.
Savona
,
L.
Andreani
,
P.
Schwendimann
, and
A.
Quattropani
, “
Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes
,”
Solid State Commun.
93
,
733
739
(
1995
).
28.
J. J.
Hopfield
, “
Theory of the contribution of excitons to the complex dielectric constant of crystals
,”
Phys. Rev.
112
,
1555
1567
(
1958
).

Supplementary Material

You do not currently have access to this content.