A gullwing-structural piezoelectric energy harvester mainly consisting of two typical nonlinear buckled-bridges is proposed to effectively scavenge low-frequency rotational kinetic energy based on a gear mechanism induced interwell oscillation. A natural buckled piezoelectric unit and a flexible polymer substrate are used for the buckled-bridge. A thinned bulk lead zirconate titanate ceramic is employed for the piezoelectric layer in consideration of its excellent electromechanical factor. The presented harvester can generate a peak open-circuit voltage of 20 V at a rotational frequency of 7.8 Hz, which has a low dependence on the applied frequency. A 100 μF capacitor reaches a charging voltage of 14.7 V after 38 s and is saturated at 16.05 V for 122 s. Through the power management circuit, the harvester generates an output power of 0.4 mW and the effective power density of 6.54 μW mm−3 at the low rotational frequency. These results indicate that this strategy is promising for self-powered sensors, especially at changeable and low-frequency ambient, such as tire pressure monitoring.

1.
H.
Li
,
C.
Tian
, and
Z. D.
Deng
,
Appl. Phys. Rev.
1
(
4
),
041301
(
2014
).
2.
C. R.
Bowen
and
M. H.
Arafa
,
Adv. Energy Mater.
5
(
7
),
1401787
(
2015
).
3.
S.
Roundy
,
P. K.
Wright
, and
J.
Rabaey
,
Comput. Commun.
26
(
11
),
1131
(
2003
).
4.
N.
Li
,
Z.
Yi
,
Y.
Ma
,
F.
Xie
,
Y.
Huang
,
Y.
Tian
,
X.
Dong
,
Y.
Liu
,
X.
Shao
,
Y.
Li
,
L.
Jin
,
J.
Liu
,
Z.
Xu
,
B.
Yang
, and
H.
Zhang
,
ACS Nano
13
(
3
),
2822
(
2019
).
5.
L.
Gu
and
C.
Livermore
,
Appl. Phys. Lett.
97
(
8
),
081904
(
2010
).
6.
Y.
Yang
,
Q.
Shen
,
J.
Jin
,
Y.
Wang
,
W.
Qian
, and
D.
Yuan
,
Appl. Phys. Lett.
105
(
5
),
053901
(
2014
).
7.
H.
Fu
and
E. M.
Yeatman
,
Appl. Phys. Lett.
107
(
24
),
243905
(
2015
).
8.
M. A.
Halim
,
R.
Rantz
,
Q.
Zhang
,
L.
Gu
,
K.
Yang
, and
S.
Roundy
,
Appl. Energy
217
,
66
(
2018
).
9.
E. R.
Westby
and
E.
Halvorsen
,
IEEE-ASME Trans. Mechatronics
17
(
5
),
995
(
2012
).
10.
G.
Zhu
,
J.
Chen
,
T.
Zhang
,
Q.
Jing
, and
Z. L.
Wang
,
Nat. Commun.
5
,
3426
(
2014
).
11.
A.
Toprak
and
O.
Tigli
,
Appl. Phys. Rev.
1
(
3
),
031104
(
2014
).
12.
H.
Liu
,
J.
Zhong
,
C.
Lee
,
S.-W.
Lee
, and
L.
Lin
,
Appl. Phys. Rev.
5
(
4
),
041306
(
2018
).
13.
Z.
Yang
,
S.
Zhou
,
J.
Zu
, and
D.
Inman
,
Joule
2
(
4
),
642
(
2018
).
14.
K. H.
Mak
,
S.
McWilliam
, and
A. A.
Popov
,
Proc. Inst. Mech. Eng., Part D
227
(
6
),
842
(
2013
).
15.
K. B.
Singh
,
V.
Bedekar
,
S.
Taheri
, and
S.
Priya
,
Mechatronics
22
(
7
),
970
(
2012
).
16.
R.
Elfrink
,
S.
Matova
,
C.
de Nooijer
,
M.
Jambunathan
,
M.
Goedbloed
,
J.
van de Molengraft
,
V.
Pop
,
R. J. M.
Vullers
,
M.
Renaud
, and
R.
van Schaijk
, in
2011 IEEE International Electron Devices Meeting
(
2011
), pp.
677
680
.
17.
Q.
Zheng
and
Y.
Xu
,
Smart Mater. Struct.
17
(
5
),
055009
(
2008
).
18.
B.
Zhu
,
J.
Han
,
J.
Zhao
, and
W.
Deng
,
J. Electron. Mater.
46
(
4
),
2483
(
2017
).
19.
Y.
Zhang
,
R.
Zheng
,
K.
Shimono
,
T.
Kaizuka
, and
K.
Nakano
,
Sensors
16
(
10
),
1727
(
2016
).
20.
Y.
Zhang
,
R.
Zheng
,
K.
Nakano
, and
M. P.
Cartmell
,
Appl. Phys. Lett.
112
(
14
),
143901
(
2018
).
21.
X.
Wu
,
M.
Parmar
, and
D.-W.
Lee
,
IEEE-ASME Trans. Mechatronics
19
(
5
),
1514
(
2014
).
22.
M.
Pozzi
,
M. S. H.
Aung
,
M.
Zhu
,
R. K.
Jones
, and
J. Y.
Goulermas
,
Smart Mater. Struct.
21
(
7
),
075023
(
2012
).
23.
S.
Priya
,
C. T.
Chen
,
D.
Fye
, and
J.
Zahnd
,
Jpn. J. Appl. Phys., Part 2
44
(
3
),
L104
(
2005
).
24.
H.
Fu
and
E. M.
Yeatman
,
Energy Technol.
6
(
11
),
2220
(
2018
).
25.
H. G.
Yeo
,
T.
Xue
,
S.
Roundy
,
X.
Ma
,
C.
Rahn
, and
S.
Trolier-McKinstry
,
Adv. Funct. Mater.
28
(
36
),
1801327
(
2018
).
26.
Z.
Yi
,
Y.
Hu
,
B.
Ji
,
J.
Liu
, and
B.
Yang
,
Appl. Phys. Lett.
113
(
18
),
183901
(
2018
).
27.
Z.
Xie
,
C. A. K.
Kwuimy
,
Z.
Wang
, and
W.
Huang
,
AIP Adv.
8
(
1
),
015125
(
2018
).
28.
H.
Fu
,
Z.
Sharif-Khodaei
, and
F.
Aliabadi
,
Appl. Phys. Lett.
114
(
14
),
143901
(
2019
).
29.
H. T.
Li
,
W. Y.
Qin
,
J.
Zu
, and
Z.
Yang
,
Nonlinear Dyn.
92
(
4
),
1761
(
2018
).
30.
Y.
Zhu
and
J. W.
Zu
,
Appl. Phys. Lett.
103
(
4
),
041905
(
2013
).
31.
F.
Cottone
,
L.
Gammaitoni
,
H.
Vocca
,
M.
Ferrari
, and
V.
Ferrari
,
Smart Mater. Struct.
21
(
3
),
035021
(
2012
).
32.
Z.
Yi
,
B.
Yang
,
G.
Li
,
J.
Liu
,
X.
Chen
,
X.
Wang
, and
C.
Yang
,
Appl. Phys. Lett.
111
(
1
),
013902
(
2017
).
33.
G.
Tang
,
B.
Bao
,
Z.
Yi
,
G.
Li
,
B.
Yang
, and
J.
Liu
,
Sens. Mater.
29
(
12
),
1733
(
2017
).
34.
G.
Li
,
Z.
Yi
,
Y.
Hu
,
J.
Liu
, and
B.
Yang
,
J. Micromech. Microeng.
28
(
9
),
095007
(
2018
).
35.
Z.
Yi
,
H.
Yang
,
Y.
Tian
,
X.
Dong
,
J.
Liu
, and
B.
Yang
,
IEEE Electron Device Lett.
39
(
8
),
1226
(
2018
).
36.
G.
Li
,
B.
Yang
,
C.
Hou
,
G.
Tang
,
J.
Liu
,
X.
Chen
,
X.
Wang
, and
C.
Yang
,
Sens. Mater.
29
(
12
),
1723
(
2017
).
37.
J. P.
Udani
and
A. F.
Arrieta
,
Appl. Phys. Lett.
111
(
21
),
213901
(
2017
).
38.
S.
Priya
,
Appl. Phys. Lett.
87
(
18
),
184101
(
2005
).
39.
N.
Rezaei-Hosseinabadi
,
A.
Tabesh
,
R.
Dehghani
, and
A.
Aghili
,
IEEE Trans. Ind. Electron.
62
(
6
),
3576
(
2015
).
40.
P.
Pillatsch
,
E. M.
Yeatman
, and
A. S.
Holmes
,
Sens. Actuators, A
206
,
178
(
2014
).

Supplementary Material

You do not currently have access to this content.