As continued silicon scaling is becoming increasingly challenging, emerging nanotechnologies such as carbon nanotubes (CNTs) are being explored. However, experimental measurements of CNT Field-Effect Transistors (CNFETs) often exhibit substantial off-state leakage current (IOFF), resulting in increased leakage power and potential incorrect logic functionality. In this work, we (1) provide insight into a key component of this off-state leakage current and experimentally demonstrate that it stems from gate-induced drain leakage commonly referred to as GIDL, (2) provide an experimentally calibrated model that closely matches our measured results, and (3) demonstrate a path for mitigating GIDL current by engineering CNFET geometries with asymmetric gates: local back-gate CNFETs whose gate overlaps the source but not the drain. We demonstrate experimentally that this approach can reduce off-state leakage current by >60× at the same bias voltage (implemented across a wide range of scaled CNFETs with gate lengths ranging from >2 μm to 180 nm). This reduced leakage current due to the asymmetric gates translates to additional energy-efficiency benefits for CNFETs. Thus, this work addresses a key challenge facing CNFET-based electronics (while simultaneously providing additional energy-efficiency benefits) and is applicable to a wide-range of emerging one-dimensional and two-dimensional nanomaterials.

1.
K. J.
Kuhn
,
IEEE Trans. Electron Devices
59
,
1813
1828
(
2012
).
2.
M. G.
Bardon
,
Y.
Sherazi
,
P.
Schuddinck
,
D.
Jang
,
D.
Yakimets
,
P.
Debacker
,
R.
Baert
,
H.
Mertens
,
M.
Badargolu
,
A.
Mocuta
 et al., in
IEEE International Electron Devices Meeting
(
2016
), pp.
28
22
.
3.
S.
Riichiro
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Physical Properties of Carbon Nanotubes
(
Imperial College Press
,
1998
).
4.
L.
Wei
,
D. J.
Frank
,
L.
Chang
, and
H. S. P.
Wong
, in
IEEE International Electron Devices Meeting
(
2009
), pp.
1
4
.
5.
L.
Chang
, “
IEDM short course
,” in
IEEE International Electron Devices Meeting
(
2012
).
6.
A. D.
Franklin
,
S. O.
Koswatta
,
D.
Farmer
,
G. S.
Tulevski
,
J. T.
Smith
,
H.
Miyazoe
, and
W.
Haensch
, in
IEEE International Electron Devices Meeting
(
2012
), pp.
4
5
.
7.
Z.
Chen
,
D.
Farmer
,
S.
Xu
,
R.
Gordon
,
P.
Avouris
, and
J.
Appenzeller
,
IEEE Electron Device Lett.
29
,
183
185
(
2008
).
8.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
De Heer
,
Science
297
,
787
792
(
2002
).
9.
A.
Javey
,
J.
Guo
,
Q.
Wang
,
M.
Lundstrom
, and
H.
Dai
,
Nature
424
(
9
),
654
(
2003
).
10.
M. M.
Shulaker
,
G.
Hills
,
N.
Patil
,
H.
Wei
,
H.-Y.
Chen
,
H.-S. P.
Wong
, and
S.
Mitra
,
Nature
501
(
10
),
526
(
2013
).
11.
M. M.
Shulaker
,
J.
Van Rethy
,
G.
Hills
,
H.
Wei
,
H. Y.
Chen
,
G.
Gielen
,
H. S. P.
Wong
, and
S.
Mitra
,
IEEE JSSC
49
,
190
201
(
2014
).
12.
M. M.
Shulaker
,
G.
Hills
,
R. S.
Park
,
R. T.
Howe
,
K.
Saraswat
,
H.-S. P.
Wong
, and
S.
Mitra
,
Nature
547
,
74
(
2017
).
13.
G.
Tulevski
,
A.
Franklin
,
D.
Frank
,
J.
Lobez
,
Q.
Cao
,
H.
Park
,
A.
Afzali
,
S.-J.
Han
,
J.
Hannon
, and
W.
Haensch
,
ACS Nano
8
,
8730
8745
(
2014
).
14.
M. M. S.
Aly
,
M.
Gao
,
G.
Hills
,
C.-S.
Lee
,
G.
Pitner
,
M. M.
Shulaker
,
T. F.
Wu
,
M.
Asheghi
,
J.
Bokor
,
F.
Franchetti
 et al.,
Computer
48
,
24
33
(
2015
).
15.
J.
Zhang
,
A.
Lin
,
N.
Patil
,
H.
Wei
,
L.
Wei
,
H. S.
Wong
, and
S.
Mitra
,
IEEE TCAD
31
,
453
471
(
2012
).
16.
G.
Hills
,
J.
Zhang
,
M. M.
Shulaker
,
H.
Wei
,
C. S.
Lee
,
A.
Balasingam
,
H. S. P.
Wong
, and
S.
Mitra
,
IEEE TCAD
34
,
1082
1095
(
2015
).
17.
M. M.
Shulaker
,
G.
Hills
,
T. F.
Wu
,
Z.
Bao
,
H. S. P.
Wong
, and
S.
Mitra
, in
IEEE International Electron Devices Meeting
(
2015
), pp.
32
34
.
18.
See www.nanointegris.com for pure semiconducting CNT solutions in aromatic solvents.
19.
G. J.
Brady
,
A. J.
Way
,
N. S.
Safron
,
H. T.
Evensen
,
P.
Gopalan
, and
M. S.
Arnold
,
Sci. Adv.
2
,
e1601240
(
2016
).
20.
C.
Qiu
,
Z.
Zhang
,
M.
Xiao
,
Y.
Yang
,
D.
Zhong
, and
L.-M.
Peng
,
Science
355
,
271
276
(
2017
).
21.
Y.
Zhang
,
J.
Wan
,
K.
Wang
, and
B.-Y.
Nguyen
,
IEEE Electron Device Lett.
23
,
419
421
(
2002
).
22.
H. C.
Lin
,
K. L.
Yeh
,
R. G.
Huang
,
C. Y.
Lin
, and
T. Y.
Huang
,
IEEE Electron Device Lett.
22
,
179
181
(
2001
).
23.
B.-Y.
Tsui
and
C.-P.
Lin
,
IEEE Trans. Electron Devices
52
,
2455
2462
(
2005
).
24.
M. K.
Husain
,
X.
Li
, and
C. H.
Groot
,
IEEE Trans. Electron Devices
56
,
499
504
(
2009
).
25.
X.
Zhao
,
A.
Vardi
, and
J. A.
del Alamo
,
IEEE Electron Device Lett.
39
,
476
479
(
2018
).
26.
S.
Veeraraghavan
and
J. G.
Fossum
,
IEEE Trans. Electron Devices
36
,
522
528
(
1989
).
27.
J.
Deng
and
H.-S. P.
Wong
,
IEEE Trans. Electron Devices
54
,
3186
3194
(
2007
).
28.
J.
Luo
,
L.
Wei
,
C.-S.
Lee
,
A.
Franklin
,
X.
Guan
,
E.
Pop
,
D. A.
Antoniadis
, and
H.-S. P.
Wong
,
IEEE Trans. Electron Devices
60
,
1834
1843
(
2013
).
29.
C.-S.
Lee
,
E.
Pop
,
A.
Franklin
,
W.
Haensch
, and
H.-S. P.
Wong
,
IEEE Trans. Electron Devices
62
,
3061
3069
(
2015
).
31.
J.
Lin
,
X.
Zhao
,
T.
Yu
,
D. A.
Antoniadis
, and
J.
Alamo
, in IEEE International Electron Devices Meeting (
2013
), pp.
16
12
.
32.
P.
Kerber
,
Q.
Zhang
,
S.
Koswatta
, and
A.
Bryant
,
IEEE Electron Device Lett.
34
,
6
8
(
2013
).
33.
J.
Chen
,
F.
Assaderaghi
,
P. K.
Ko
, and
C.
Hu
,
IEEE Electron Device Lett.
13
,
572
574
(
1992
).
34.
X.
Yuan
,
J. E.
Park
,
J.
Wang
,
E.
Zhao
,
D. C.
Ahlgren
,
T.
Hook
,
J.
Yuan
,
V. W.
Chan
,
H.
Shang
,
C. H.
Liang
, and
R.
Lindsay
,
IEEE Trans. Device Mater. Reliab.
8
,
501
508
(
2008
).
35.
S.
Lee
,
C.
Huang
,
D.
Cohen-Elias
,
J.
Law
,
V.
Chobpattanna
,
S.
Krämer
,
B.
Thibeault
,
W.
Mitchell
,
S.
Stemmer
,
A.
Gossard
, and
M.
Rodwell
,
Appl. Phys. Lett.
103
,
233503
(
2013
).
36.
Y.-K.
Choi
,
D.
Ha
,
T.-J.
King
, and
J.
Bokor
,
Jpn. J. Appl. Phys., Part 1
42
,
2073
(
2003
).
37.
W.
Beyer
and
R.
Fischer
,
Appl. Phys. Lett.
31
,
850
852
(
1977
).
38.
S.
Lee
,
C.-Y.
Huang
,
D.
Cohen-Elias
,
B. J.
Thibeault
,
W.
Mitchell
,
V.
Chobpattana
,
S.
Stemmer
,
A. C.
Gossard
, and
M. J. W.
Rodwell
,
IEEE Electron Device Lett.
35
,
621
623
(
2014
).
39.
J.
Appenzeller
,
Y.-M.
Lin
,
J.
Knoch
,
Z.
Chen
, and
P.
Avouris
,
IEEE Trans. Electron Devices
52
,
2568
2576
(
2005
).
40.
G. A. M.
Hurkx
,
D. B. M.
Klaassen
, and
M. P. G.
Knuvers
,
IEEE Trans. Electron Devices
39
,
331
338
(
1992
).
41.
A. S.
Sedra
and
K. C.
Smith
,
Microelectronic Circuits
(
Oxford University Press
,
New York
,
1998
), Vol.
1
.
42.
J. M.
Rabaey
,
A. P.
Chandrakasan
, and
B.
Nikolic
,
Digital Integrated Circuits
(
Prentice Hall
,
Englewood Cliffs
,
2002
), Vol.
2
.
43.
B.
Andreev
,
E. L.
Titlebaum
, and
E. J.
Friedman
,
J. Circuits Syst. Comput.
15
,
437
454
(
2006
).
44.
T. Y.
Chan
,
J.
Chen
,
P. K.
Ko
, and
C.
Hu
, in
IEEE International Electron Devices Meeting
(
1987
), pp.
718
721
.
45.
L. E.
Calvet
,
Electrical Transport in Schottky Barrier MOSFETs
(
Yale University
,
2001
).
46.
K.
Alam
and
R. K.
Lake
,
J. Appl. Phys.
98
,
064307
(
2005
).
47.
S.
Heinze
,
J.
Tersoff
, and
P.
Avouris
,
Appl. Phys. Lett.
83
,
5038
5040
(
2003
).
48.
Y. M.
Lin
,
J.
Appenzeller
, and
P.
Avouris
,
Nano Lett.
4
,
947
950
(
2004
).
49.
Y. F.
Chen
and
M. S.
Fuhrer
,
Phys. Rev. Lett.
95
(
23
),
236803
(
2005
).

Supplementary Material

You do not currently have access to this content.