In this paper, we present the proof-of-concept of a device for rectifying ac-magnetic-field effects by mixing thermal spin and charge currents. The device consists of a NiO/Pt bilayer in which a pure spin current is generated perpendicularly to the sample plane by means of the spin Seebeck effect. The pure spin current, created in the NiO layer, is injected into the Pt layer and is converted into a charge current by means of the inverse spin Hall effect, which is measured by electrical contacts. Due to the combination of two effects, the spin Seebeck and the planar Nernst effect, the overall response of the device as a function of a magnetic field is similar to the one of a rectifying diode. The resulting charge current mainly flows in one direction, approaching zero for negative values of the magnetic field when the spin Seebeck voltage has an opposite sign and magnitude close to the planar Nernst effect contribution. This remarkable effect is well explained by analyzing the response function as well as taking into account the magnon diffusion theory for the spin Seebeck effect. We believe that this proof of concept is of interest to the development of spintronic devices.

1.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C.  H.
Back
, and
T.
Jungwirth
,
Rev. Mod. Phys.
87
,
1213
(
2015
).
2.
K.
Uchida
,
S.
Takahashi
,
K.
Harii
,
J.
Ieda
,
W.
Koshibae
,
K.
Ando
,
S.
Maekawa
, and
E.
Saitoh
,
Nature
455
,
778
781
(
2008
).
3.
K.
Uchida
,
T.
Nonaka
,
T.
Ota
,
H.
Nakayama
, and
E.
Saitoh
,
Appl. Phys. Lett.
97
,
262504
(
2010
).
4.
B. F.
Miao
,
S. Y.
Huang
,
D.
Qu
, and
C. L.
Chien
,
Phys. Rev. Lett.
111
,
066602
(
2013
).
5.
S. M.
Rezende
,
R. L.
Rodríguez-Suárez
,
R. O.
Cunha
,
J. C.
López Ortiz
, and
A.
Azevedo
,
J. Magn. Magn. Mater.
400
,
171
177
(
2016
).
6.
A.
Azevedo
,
L. H.
Vilela-Leão
,
R. L.
Rodríguez-Suárez
,
A. B.
Oliveira
, and
S. M.
Rezende
,
J. Appl. Phys.
97
,
10C715
(
2005
).
7.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
,
182509
(
2006
).
8.
A.
Hoffmann
,
IEEE Trans. Magn.
49
,
5172
(
2013
).
9.
A.
Brataas
,
Y.
Tserkovnyak
,
G. E. W.
Bauer
, and
B. I.
Halperin
,
Phys. Rev. B
66
,
060404(R)
(
2002
).
10.
J.
Tian
,
S.
Hong
,
I.
Miotkowski
,
S.
Datta
, and
Y. P.
Chen
,
Sci. Adv.
3
(
4
),
e1602531
(
2017
).
11.
S.
Datta
and
B.
Das
,
Appl. Phys. Letts.
56
,
665
667
(
1990
).
12.
L.  J.
Cornelissen
,
J.
Liu
,
B.  J.
van Wees
, and
R.  A.
Duine
,
Phys. Rev. Lett.
120
,
097702
(
2018
).
13.
A. A.
Khudorozhkov
,
P. N.
Skirdkov
,
K. A.
Zvezdin
,
P. M.
Vetoshko
, and
A. F.
Popkov
,
PHys. Rev. B
96
,
214410
(
2017
).
14.
V.
Balachandran
,
G.
Benenti
,
E.
Pereira
,
G.
Casati
, and
D.
Poletti
,
Phys. Rev. Lett.
120
,
200603
(
2018
).
15.
K.
Olejník
,
V.
Schuler
,
X.
Marti
,
V.
Novák
,
Z.
Kaspar
,
P.
Wadley
,
R. P.
Campion
,
K. W.
Edmonds
,
B. L.
Gallagher
,
J.
Garces
,
M.
Baumgartner
,
P.
Gambardella
, and
T.
Jungwirth
,
Nat. Commun.
8
,
15434
(
2017
).
16.
X.
Marti
,
I.
Fina
,
C.
Frontera
,
J.
Liu
,
P.
Wadley
,
Q.
He
,
R. J.
Paull
,
J. D.
Clarkson
,
J.
Kudrnovský
,
I.
Turek
,
J.
Kuneš
,
D.
Yi
,
J.-H.
Chu
,
C. T.
Nelson
,
L.
You
,
E.
Arenholz
,
S.
Salahuddin
,
J.
Fontcuberta
,
T.
Jungwirth
, and
R.
Ramesh
,
Nat. Mater.
13
,
367
(
2014
).
17.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
,
Nat. Nanotechnol.
11
,
231
(
2016
).
18.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
,
Phys. Status Solidi RRL
11
,
1700022
(
2017
).
19.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
,
Rev. Mod. Phys.
90
,
015005–1
(
2018
).
20.
R. A.
Duine
,
K. J.
Lee
,
S. S. P.
Parkin
, and
M. D.
Stiles
,
Nat. Phys.
14
,
217
(
2018
).
21.
M. B.
Jungfleisch
,
W.
Zhang
, and
A.
Hoffmann
,
Phys. Lett. A
382
,
865
(
2018
).
22.
P.
Němec
,
M.
Fiebig
,
T.
Kampfrath
, and
A. V.
Kimel
,
Nat. Phys.
14
,
229
(
2018
).
23.
L.
Šmejkal
,
Y.
Mokrousov
,
Y.
Binghai
, and
A. H.
MacDonald
,
Nat. Phys.
14
,
242
(
2018
).
24.
J.
Železný
,
P.
Wadley
,
K.
Olejník
,
A.
Hoffmann4
, and
H.
Ohno
,
Nat. Phys.
14
,
220
228
(
2018
).
25.
T.
Jungwirth
,
J.
Sinova
,
A.
Manchon
,
X.
Marti
,
J.
Wunderlich
, and
C.
Felser
,
Nat. Phys.
14
,
200
(
2018
).
26.
F. L. A.
Machado
,
P. R. T.
Ribeiro
,
J.
Holanda
,
R. L.
Rodríguez-Suárez
,
A.
Azevedo
, and
S. M.
Rezende
,
Phys. Rev. B
95
,
104418
(
2017
).
27.
R.
Iguchi
,
A.
Yagmur
,
Y.-C.
Lau
,
S.
Daimon
,
E.
Saitoh
,
M.
Hayashi
, and
K.
Uchida
,
Phys. Rev. B
98
, 0
14402
(
2018
).
28.
Y.
Chen
,
D.
Roy
,
E.
Cogulu
,
H.
Chang
,
M.
Wu
, and
A. D.
Kent
,
Appl. Phys. Lett.
113
,
202403
(
2018
).
29.
P. R. T.
Ribeiro
,
F. L. A.
Machado
,
M.
Gamino
,
A.
Azevedo
, and
S. M.
Rezende
,
Phys. Rev. B
99
,
094432
(
2019
).
30.
S. M.
Rezende
,
R. L.
Rodríguez-Suárez
, and
A.
Azevedo
,
J. Phys. D: Appl. Phys.
51
,
174004
(
2018
).
31.
T.
Kikkawa
,
K.
Uchida
,
Y.
Shiomi
,
Z.
Qiu
,
D.
Hou
,
D.
Tian
,
H.
Nakayama
,
X.-F.
Jin
, and
E.
Saitoh
,
Phys. Rev. Lett.
110
,
067207
(
2013
).
32.
C. T.
Bui
and
F.
Rivadulla
,
Phys. Rev. B
90
,
100403(R)
(
2014
).
You do not currently have access to this content.