Hydrophobic surfaces like Lotus leaves show amazing self-cleaning properties with the apparent water contact angle above 150° and contact angle hysteresis below 10°. Thus, at low inclination angles, millimeter drops can roll-off easily. This effect can be a consequence of the air trapped below the drop, which allows the droplet to reach a superhydrophobic Cassie-Baxter state. However, the superhydrophobic state can be accompanied by very different adhesive properties due to the pinning of the droplet to the microstructures, implying that even in a hydrophobic or superhydrophobic state, the droplet might not roll-off easily. A superhydrophobic state with minimum adhesion to the surface has been the pursuit in many applications where a super-repellent state is highly desired. Many microstructures have been shown to be able to reach a superhydrophobic state, but only a few have been shown to be capable of achieving a super-repellent state without the help of more complex hierarchical structures. Here, we show that conical structures provide a template for designing super-repellent surfaces where the wetting characteristics look to be invariant in the microscale range. The conical structures can maintain a super-repellent state for all intrinsic contact angles larger than 90°, and the transition from the Cassie-Baxter to the Wenzel state is controlled by the apex angle of the conical structures. This finding advances the understanding of why conical structures can show a superhydrophobic state, which will be beneficial for the design of super-repellent surfaces with a wider intrinsic contact angle range.

1.
T.
Mouterde
,
G.
Lehoucq
,
S.
Xavier
,
A.
Checco
,
C. T.
Black
,
A.
Rahman
,
T.
Midavaine
,
C.
Clanet
, and
D.
Quéré
, “
Antifogging abilities of model nanotextures
,”
Nat. Mater.
16
,
658
663
(
2017
).
2.
A.
Telecka
,
T.
Li
,
S.
Ndoni
, and
R.
Taboryski
, “
Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties
,”
RSC Adv.
8
,
4204
4213
(
2018
).
3.
E.
Martines
,
K.
Seunarine
,
H.
Morgan
,
N.
Gadegaard
,
C. D.
Wilkinson
, and
M. O.
Riehle
, “
Superhydrophobicity and superhydrophilicity of regular nanopatterns
,”
Nano Lett.
5
,
2097
2103
(
2005
).
4.
K. M.
Wisdom
,
J. A.
Watson
,
X.
Qu
,
F.
Liu
,
G. S.
Watson
, and
C.-H.
Chen
, “
Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
,”
Proc. Natl. Acad. Sci.
110
,
7992
7997
(
2013
); e-print arXiv:1406.7436.
5.
C. S.
Sharma
,
C.
Stamatopoulos
,
R.
Suter
,
P. R. V.
Rohr
, and
D.
Poulikakos
, “
Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation
,”
ACS Appl. Mater. Interfaces
10
,
29127
29135
(
2018
).
6.
I.
Park
,
M.
Fernandino
, and
C.
Dorao
, “
Wetting state transitions over hierarchical conical microstructures
,”
Adv. Mater. Interfaces
5
,
1701039
(
2018
).
7.
M.
Liu
,
S.
Wang
, and
L.
Jiang
, “
Nature-inspired superwettability systems
,”
Nat. Rev. Mater.
2
,
17036
(
2017
).
8.
P.
Joseph
,
C.
Cottin-Bizonne
,
J. M.
Benoît
,
C.
Ybert
,
C.
Journet
,
P.
Tabeling
, and
L.
Bocquet
, “
Slippage of water past superhydrophobic carbon nanotube forests in microchannels
,”
Phys. Rev. Lett.
97
,
1
4
(
2006
); e-print arXiv:0609043 [cond-mat].
9.
A.
Tuteja
,
W.
Choi
,
J. M.
Mabry
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Robust omniphobic surfaces
,”
Proc. Natl. Acad. Sci.
105
,
18200
18205
(
2008
); e-print arXiv:0811.2183v2.
10.
S.
Pan
,
R.
Guo
,
M.
Björnmalm
,
J. J.
Richardson
,
L.
Li
,
C.
Peng
,
N.
Bertleff-Zieschang
,
W.
Xu
,
J.
Jiang
, and
F.
Caruso
, “
Coatings super-repellent to ultralow surface tension liquids
,”
Nat. Mater.
17
,
1040
1047
(
2018
).
11.
J. C.
Bird
,
R.
Dhiman
,
H. M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
); e-print arXiv:1011.1669v3.
12.
B.
D'Urso
,
J. T.
Simpson
, and
M.
Kalyanaraman
, “
Emergence of superhydrophobic behavior on vertically aligned nanocone arrays
,”
Appl. Phys. Lett.
90
,
044102
(
2007
).
13.
K.
Li
,
J.
Ju
,
Z.
Xue
,
J.
Ma
,
L.
Feng
,
S.
Gao
, and
L.
Jiang
, “
Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water
,”
Nat. Commun.
4
,
2276
(
2013
).
14.
A.
Checco
,
B. M.
Ocko
,
A.
Rahman
,
C. T.
Black
,
M.
Tasinkevych
,
A.
Giacomello
, and
S.
Dietrich
, “
Collapse and reversibility of the superhydrophobic state on nanotextured surfaces
,”
Phys. Rev. Lett.
112
,
1
5
(
2014
).
15.
E.
Hosono
,
S.
Fujihara
,
I.
Honma
, and
H.
Zhou
, “
Superhydrophobic perpendicular nanopin film by the bottom-up process
,”
J. Am. Chem. Soc.
127
(39),
13458
13459
(
2005
).
16.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
99
(
2008
).
17.
A. J.
Milne
and
A.
Amirfazli
, “
The Cassie equation: How it is meant to be used
,”
Adv. Colloid Interface Sci.
170
,
48
55
(
2012
).
18.
J.
Bico
,
U.
Thiele
, and
D.
Quéré
, “
Wetting of textured surfaces
,”
Colloids Surf. A
206
,
41
46
(
2002
).
19.
Y. T.
Cheng
and
D. E.
Rodak
, “
Is the lotus leaf superhydrophobic?
,”
Appl. Phys. Lett.
86
,
144101
(
2005
).
20.
J.
Zeegers
,
D. V. D.
Ende
, and
F.
Mugele
, “
Trapping of drops by wetting defects
,”
Nature Communications
5
,
3559
(
2014
).
21.
J.
Kujawa
and
W.
Kujawski
, “
Functionalization of ceramic metal oxide powders and ceramic membranes by perfluoroalkylsilanes and alkylsilanes possessing different reactive groups: Physicochemical and tribological properties
,”
ACS Appl. Mater. Interfaces
8
(
11
),
7509
7521
(
2016
).
22.
G.
McHale
,
S.
Aqil
,
N. J.
Shirtcliffe
,
M. I.
Newton
, and
H. Y.
Erbil
, “
Analysis of droplet evaporation on a superhydrophobic surface
,”
Langmuir
21
,
11053
11060
(
2005
).
23.
S.
Moulinet
and
D.
Bartolo
, “
Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces
,”
Eur. Phys. J. E
24
,
251
260
(
2007
).
24.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
,
Y.
Bormashenko
, and
M.
Erlich
, “
Vibration-induced Cassie-Wenzel wetting transition on rough surfaces
,”
Appl. Phys. Lett.
90
,
2005
2007
(
2007
).
25.
D.
Bartolo
,
F.
Bouamrirene
,
É.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
305
(
2006
).
26.
Y. C.
Jung
and
B.
Bhushan
, “
Dynamic effects of bouncing water droplets on superhydrophobic surfaces
,”
Langmuir
24
,
6262
6269
(
2008
).
27.
A.
Lafuma
and
D.
Quéré
, “
Superhydrophobic states
,”
Nat. Mater.
2
,
457
460
(
2003
).
28.
E.
Bormashenko
, “
Progress in understanding wetting transitions on rough surfaces
,”
Adv. Colloid Interface Sci.
222
,
92
103
(
2015
).

Supplementary Material

You do not currently have access to this content.