Solid-state thermoelectric cooling is expected to be widely used in various cryogenic applications such as local cooling of superconducting devices. At present, however, thermoelectric cooling using p- and n-type Bi2Te3-based materials has been put to practical use only at room temperature. Recently, M4SiTe4 (M = Ta, Nb) has been found to show excellent n-type thermoelectric properties down to 50 K. This paper reports on the synthesis of high-performance p-type M4SiTe4 by Ti doping, which can be combined with n-type M4SiTe4 in a cooling device at low temperatures. The thermoelectric power factor of p-type M4SiTe4 reaches a maximum value of approximately 60 μW cm−1 K−2 at 210 K and exceeds the practical level in a wide temperature range of 130–270 K. A finite temperature drop by Peltier cooling was also achieved in a cooling device made of p- and n-type Ta4SiTe4 whisker crystals. These results clearly indicate that M4SiTe4 is promising to realize a practical thermoelectric cooler for use at low temperatures, which is not covered by Bi2Te3-based materials.

1.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravide
, and
M. G.
Kanatzidis
,
Nature
489
,
414
(
2012
).
2.
K. F.
Hsu
,
S.
Loo
,
F.
Guo
,
W.
Chen
,
J. S.
Dyck
,
C.
Uher
,
T.
Hogan
,
E. K.
Polychroniadis
, and
M. G.
Kanatzidis
,
Science
303
,
818
(
2004
).
3.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
4.
C.
Chang
,
M.
Wu
,
D.
He
,
Y.
Pei
,
C.-F.
Wu
,
X.
Wu
,
H.
Yu
,
F.
Zhu
,
K.
Wang
,
Y.
Chen
,
L.
Huang
,
J.-F.
Li
,
J.
He
, and
L.-D.
Zhao
,
Science
360
,
778
(
2018
).
5.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
,
597
(
2001
).
6.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
(
2008
).
7.
W. M.
Yim
and
A.
Amith
,
Solid State Electron.
15
,
1141
(
1972
).
8.
D.-Y.
Chung
,
T.
Hogan
,
P.
Brazis
,
M.
Rocci-Lane
,
C.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
,
Science
287
,
1024
(
2000
).
9.
D.-Y.
Chung
,
T. P.
Hogan
,
M.
Rocci-Lane
,
P.
Brazis
,
J. R.
Ireland
,
C. R.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
126
,
6414
(
2004
).
10.
R. T.
Littleton
 IV
,
T. M.
Tritt
,
J. W.
Kolis
,
D. R.
Ketchum
,
N. D.
Lowhorn
, and
M. B.
Korzenski
,
Phys. Rev. B
64
,
121104
(
2001
).
11.
T. M.
Tritt
and
R. T.
Littleton
,
Semiconductors and Semimetals
(
Academic Press
,
San Diego, USA
,
2001
), Vol.
70
, pp.
179
206
.
12.
T.
Inohara
,
Y.
Okamoto
,
Y.
Yamakawa
,
A.
Yamakage
, and
K.
Takenaka
,
Appl. Phys. Lett.
110
,
183901
(
2017
).
13.
M. E.
Badding
and
F. J.
DiSalvo
,
Inorg. Chem.
29
,
3952
(
1990
).
14.
J.
Li
,
R.
Hoffmann
,
M. E.
Badding
, and
F. J.
DiSalvo
,
Inorg. Chem.
29
,
3943
(
1990
).
15.
Y.
Okamoto
,
T.
Wada
,
Y.
Yamakawa
,
T.
Inohara
, and
K.
Takenaka
,
Appl. Phys. Lett.
112
,
173905
(
2018
).
16.
G. D.
Mahan
,
Solid State Physics
(
Academic Press
,
New York, USA
,
1997
), Vol.
51
, pp.
81
157
.
17.
L. R.
Testardi
,
J. N.
Bierly
, Jr.
, and
F. J.
Donahoe
,
J. Phys. Chem. Solid
23
,
1209
(
1962
).
You do not currently have access to this content.