Mechanical oscillators based on levitated particles are promising candidates for sensitive detectors and platforms for testing fundamental physics. The targeted quality factors for such oscillators correspond to extremely low damping rates of the center-of-mass motion, which can only be obtained if the particles are trapped in ultrahigh vacuum (UHV). In order to reach such low pressures, a noncontaminating method of loading particles in a UHV environment is necessary. However, loading particle traps at pressures below the viscous flow regime is challenging due to the conservative nature of trapping forces and reduced gas damping. We demonstrate a technique that allows us to overcome these limitations and load particles into a Paul trap at pressures as low as 4 × 10–7 mbar. The method is based on laser-induced acoustic desorption of nanoparticles from a metallic foil and temporal control of the Paul trap potential. We show that the method is highly efficient: More than half of the trapping attempts are successful. Moreover, since trapping attempts can be as short as a few milliseconds, the technique provides high throughput of loaded particles. Finally, the efficiency of the method does not depend on pressure, indicating that the method should be extensible to UHV.

1.
A.
Ashkin
,
Phys. Rev. Lett.
24
,
156
(
1970
).
2.
L. P.
Neukirch
and
A. N.
Vamivakas
,
Contemp. Phys.
56
,
1
(
2014
).
3.
M.
Bhattacharya
,
A. N.
Vamivakas
, and
P.
Barker
,
J. Opt. Soc. Am. B
34
,
LO1
(
2017
).
4.
D. E.
Chang
,
C. A.
Regal
,
S. B.
Papp
,
D. J.
Wilson
,
J.
Ye
,
O.
Painter
,
H. J.
Kimble
, and
P.
Zoller
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
1005
(
2010
).
5.
O.
Romero-Isart
,
M. L.
Juan
,
R.
Quidant
, and
J. I.
Cirac
,
New J. Phys.
12
,
033015
(
2010
).
6.
P. F.
Barker
and
M. N.
Shneider
,
Phys. Rev. A
81
,
023826
(
2010
).
7.
O.
Romero-Isart
,
A. C.
Pflanzer
,
M. L.
Juan
,
R.
Quidant
,
N.
Kiesel
,
M.
Aspelmeyer
, and
J. I.
Cirac
,
Phys. Rev. A
83
,
013803
(
2011
).
8.
I. F.
Lyuksyutov
,
D. G.
Naugle
, and
K. D. D.
Rathnayaka
,
Appl. Phys. Lett.
85
,
1817
(
2004
).
9.
J.-F.
Hsu
,
P.
Ji
,
C. W.
Lewandowski
, and
B.
D'Urso
,
Sci. Rep.
6
,
30125
(
2016
).
10.
B. E.
Kane
,
Phys. Rev. B
82
,
115441
(
2010
).
11.
A.
Kuhlicke
,
A. W.
Schell
,
J.
Zoll
, and
O.
Benson
,
Appl. Phys. Lett.
105
,
073101
(
2014
).
12.
J.
Millen
,
P. Z. G.
Fonseca
,
T.
Mavrogordatos
,
T. S.
Monteiro
, and
P. F.
Barker
,
Phys. Rev. Lett.
114
,
123602
(
2015
).
13.
T.
Delord
,
L.
Nicolas
,
L.
Schwab
, and
G.
Hétet
,
New J. Phys.
19
,
033031
(
2017
).
14.
G. P.
Conangla
,
A. W.
Schell
,
R. A.
Rica
, and
R.
Quidant
,
Nano Lett.
18
,
3956
(
2018
).
15.
N.
Kiesel
,
F.
Blaser
,
U.
Delić
,
D.
Grass
,
R.
Kaltenbaek
, and
M.
Aspelmeyer
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
14180
(
2013
).
16.
M.
Wallquist
,
K.
Hammerer
,
P.
Rabl
,
M.
Lukin
, and
P.
Zoller
,
Phys. Scr.
T137
,
014001
(
2009
).
17.
C.
Genes
,
H.
Ritsch
, and
D.
Vitali
,
Phys. Rev. A
80
,
061803
(
2009
).
18.
A. C.
Pflanzer
,
O.
Romero-Isart
, and
J. I.
Cirac
,
Phys. Rev. A
88
,
33804
(
2013
).
19.
M. D.
Summers
,
D. R.
Burnham
, and
D.
McGloin
,
Opt. Express
16
,
7739
(
2008
).
20.
Y.
Cai
,
W.-P.
Peng
,
S.-J.
Kuo
,
Y. T.
Lee
, and
H.-C.
Chang
,
Anal. Chem.
74
,
232
(
2002
).
21.
A.
Ashkin
and
J. M.
Dziedzic
,
Appl. Phys. Lett.
19
,
283
(
1971
).
22.
P.
Asenbaum
,
S.
Kuhn
,
S.
Nimmrichter
,
U.
Sezer
, and
M.
Arndt
,
Nat. Commun.
4
,
2743
(
2013
).
23.
J.
Millen
,
S.
Kuhn
,
F.
Patolsky
,
A.
Kosloff
, and
M.
Arndt
,
Proc. SPIE
9922
,
99220C
(
2016
).
24.
P.
Mestres
,
J.
Berthelot
,
M.
Spasenović
,
J.
Gieseler
,
L.
Novotny
, and
R.
Quidant
,
Appl. Phys. Lett.
107
,
151102
(
2015
).
25.
F.
Benabid
,
J. C.
Knight
,
P.
St
, and
J.
Russell
,
Opt. Express
10
,
1195
(
2002
).
26.
D. S.
Bykov
,
O. A.
Schmidt
,
T. G.
Euser
, and
P. S. J.
Russell
,
Nat. Photonics
9
,
461
(
2015
).
27.
D.
Grass
,
J.
Fesel
,
S. G.
Hofer
,
N.
Kiesel
, and
M.
Aspelmeyer
,
Appl. Phys. Lett.
108
,
221103
(
2016
).
28.
P. K.
Ghosh
,
Ion Traps
(
Clarendon Press
,
Oxford
,
1995
) p.
326
.
29.
L.
Schmöger
,
O. O.
Versolato
,
M.
Schwarz
,
M.
Kohnen
,
A.
Windberger
,
B.
Piest
,
S.
Feuchtenbeiner
,
J.
Pedregosa-Gutierrez
,
T.
Leopold
,
P.
Micke
,
A. K.
Hansen
,
T. M.
Baumann
,
M.
Drewsen
,
J.
Ullrich
,
P. O.
Schmidt
, and
J. R. C.
López-Urrutia
,
Science
347
,
1233
(
2015
).
30.
F.
Gittes
and
C. F.
Schmidt
,
Opt. Lett.
23
,
7
(
1998
).
31.
T.
Li
,
S.
Kheifets
, and
M. G.
Raizen
,
Nat. Phys.
7
,
527
(
2011
).
32.
K.
Berg-Sørensen
and
H.
Flyvbjerg
,
Rev. Sci. Instrum.
75
,
594
(
2004
).
33.
S. A.
Beresnev
,
V. G.
Chernyak
, and
G. A.
Fomyagin
,
J. Fluid Mech.
219
,
405
(
1990
).
34.
V.
Jain
,
J.
Gieseler
,
C.
Moritz
,
C.
Dellago
,
R.
Quidant
, and
L.
Novotny
,
Phys. Rev. Lett.
116
,
243601
(
2016
).
35.
P.
Nagornykh
,
J. E.
Coppock
, and
B. E.
Kane
,
Appl. Phys. Lett.
106
,
244102
(
2015
).
36.
P.
Bushev
,
D.
Rotter
,
A.
Wilson
,
F. M C
Dubin
,
C.
Becher
,
J.
Eschner
,
R.
Blatt
,
V.
Steixner
,
P.
Rabl
, and
P.
Zoller
,
Phys. Rev. Lett.
96
,
043003
(
2006
).
37.
J.
Gieseler
,
B.
Deutsch
,
R.
Quidant
, and
L.
Novotny
,
Phys. Rev. Lett.
109
,
103603
(
2012
).
38.
J.
Vovrosh
,
M.
Rashid
,
D.
Hempston
,
J.
Bateman
,
M.
Paternostro
, and
H.
Ulbricht
,
J. Opt. Soc. Am. B
34
,
1421
(
2017
).
39.
C.
Marletto
and
V.
Vedral
,
Phys. Rev. Lett.
119
,
240402
(
2017
).
40.
S.
Bose
,
A.
Mazumdar
,
G. W.
Morley
,
H.
Ulbricht
,
M.
Toros
,
M.
Paternostro
,
A. A.
Geraci
,
P. F.
Barker
,
M. S.
Kim
, and
G.
Milburn
,
Phys. Rev. Lett.
119
,
240401
(
2017
).
You do not currently have access to this content.