The harvesting of energy from human motion for portable and wearable electronic devices has received considerable attention. This letter describes a lightweight macrofiber composite (MFC)-based energy harvester for capturing biomechanical energy through the natural motion of the human knee. In the proposed device, a slider-crank mechanism is used to transform the rotary motion of the knee joint to linear motion, and a bending beam is used to transform the linear motion to a bending motion. When walking, a bending deformation is induced in two MFC slices attached to the bending beam, generating electrical energy. To test the performance of the developed device, treadmill tests at various walking speeds and resistive loads are performed. Experimental results show that the lightweight harvester (weighing just 307 g) can generate 1.60 mW without increasing the human effort required for walking. This is expected to significantly promote the usage of biomechanical energy harvesters.

1.
T.
Xue
,
H. G.
Yeo
,
S.
Trolier-McKinstry
, and
S.
Roundy
,
Smart Mater. Struct.
27
,
085026
(
2018
).
2.
Y.
Rao
,
S.
Cheng
, and
D. P.
Arnold
,
J. Micromech. Microeng.
23
,
114012
(
2013
).
3.
H.
Liu
,
C.
Hou
,
J.
Lin
,
Y.
Li
,
Q.
Shi
,
T.
Chen
,
L.
Sun
, and
C.
Lee
,
Appl. Phys. Lett.
113
,
203901
(
2018
).
4.
M.
Niroomand
and
H. R.
Foroughi
,
J. Appl. Res. Technol.
14
,
259
(
2016
).
5.
F.
Khameneifar
,
S.
Arzanpour
, and
M.
Moallem
,
IEEE/ASME Trans. Mechtronics
18
,
1527
(
2013
).
6.
M.
Kim
and
K.
Yun
,
Micromachines
8
,
115
(
2017
).
7.
X.
Chen
,
L.
Miao
,
H.
Guo
,
H.
Chen
,
Y.
Song
,
Z.
Su
, and
H.
Zhang
,
Appl. Phys. Lett.
112
,
203902
(
2018
).
8.
J.
Feenstra
,
J.
Granstrom
, and
H.
Sodano
,
Mech. Syst. Signal Process.
22
,
721
(
2008
).
9.
M. J.
Cai
,
W. H.
Liao
, and
J.
Cao
,
Smart Mater. Struct.
28
,
015026
(
2019
).
10.
S.
Lee
,
H.
Wang
,
J.
Wang
,
Q.
Shi
,
S. C.
Yen
,
N. V.
Thakor
, and
C.
Lee
,
Nano Energy
50
,
148
(
2018
).
11.
J.
Wang
,
H.
Wang
,
N. V.
Thakor
, and
C.
Lee
,
ACS Nano
13
,
3589
(
2019
).
12.
K.
Ylli
,
D.
Hoffmann
,
A.
Willmann
,
P.
Becker
,
B.
Folkmer
, and
Y.
Manoli
,
Smart Mater. Struct.
24
,
025029
(
2015
).
13.
J.
Zhao
and
Z.
You
,
Sensors
14
,
12497
(
2014
).
14.
L.
Xie
and
M.
Cai
,
Appl. Phys. Lett.
105
,
143901
(
2014
).
15.
K.
Fan
,
Z.
Liu
,
H.
Liu
,
L.
Wang
,
Y.
Zhu
, and
B.
Yu
,
Appl. Phys. Lett.
110
,
143902
(
2017
).
16.
J.
Kymissis
,
C.
Kendall
,
J.
Paradiso
, and
N.
Gershenfeld
, in
Proceedings of 2nd IEEE International Symposium on Wearable Computers
(
1998
).
17.
W.
Wang
,
J.
Cao
,
C. R.
Bowen
,
D. J.
Inman
, and
J.
Lin
,
Appl. Phys. Lett.
112
,
213903
(
2018
).
18.
S.
Wei
,
H.
Hu
, and
S.
He
,
Smart Mater. Struct.
22
,
105020
(
2013
).
19.
W.
Wang
,
J.
Cao
,
N.
Zhang
,
J.
Lin
, and
W. H.
Liao
,
Energy Convers. Manage.
132
,
189
(
2017
).
20.
Y.
Kuang
,
T.
Ruan
,
Z. J.
Chew
, and
M.
Zhu
,
Sens. Actuators, A
254
,
69
(
2017
).
21.
Q.
Li
,
V.
Naing
, and
J. M.
Donelan
,
J. Neuroeng. Rehabil.
6
,
22
(
2009
).
22.
A.
Cervera
,
Z.
Rubinshtein
,
M.
Gad
,
R.
Riemer
, and
M. M.
Peretz
,
IEEE J. Emerging Sel. Top. Power Electron.
4
,
293
(
2016
).
23.
A.
Proto
,
B.
Fida
,
I.
Bernabucci
,
D.
Bibbo
,
S.
Conforto
,
M.
Schmid
,
K.
Valch
,
V.
Kasik
, and
M.
Penhaker
, in
Proceedings of IEEE EBS International Conference on Biomedical Engineering and Science
(
2016
), p.
62
.
24.
J. M.
Donelan
,
Q.
Li
,
V.
Naing
,
J. A.
Hoffer
,
D. J.
Weber
, and
A. D.
Kuo
,
Science
319
,
807
(
2008
).
25.
B.
Yan
,
C.
Zhang
, and
L.
Li
,
AIP Adv.
8
,
056730
(
2018
).
27.
L. C.
Rome
,
L.
Flynn
,
E. M.
Goldman
, and
T. D.
Yoo
,
Science
309
,
1725
(
2005
).
28.
Z.
Wu
,
J.
Tang
,
X.
Zhang
, and
Z.
Yu
,
Appl. Phys. Lett.
111
,
013903
(
2017
).
29.
R.
Riener
,
M.
Rabuffetti
, and
C.
Frigo
,
Gait Posture
15
,
32
(
2002
).
30.
K. R.
Ford
,
R.
Shapiro
,
G. D.
Myer
,
A. J. V. D.
Bogert
, and
T. E.
Hewett
,
Med. Sci. Sports Exercise
42
,
1923
(
2010
).
31.
C.
Chen
,
L. Y.
Chau
, and
W. H.
Liao
,
Smart Mater. Struct.
26
,
065027
(
2017
).
32.
R. G.
Soule
and
R. F.
Goldman
,
J. Appl. Physiol.
27
,
687
(
1969
).
33.
R. C.
Browning
,
J. R.
Modica
,
R.
Kram
, and
A.
Goswami
,
Med. Sci. Sports Exercise
39
,
515
(
2007
).
34.
M.
Shepertycky
and
Q.
Li
,
PLoS One
10
,
e0127635
(
2015
).
35.
H.
Liu
,
J.
Zhong
,
C.
Lee
, and
S. W.
Lee
,
Appl. Phys. Rev.
5
,
041306
(
2018
).
36.
L.
Chen
,
Q.
Shi
,
Y.
Sun
,
T.
Nguyen
,
C.
Lee
, and
S.
Soh
,
Adv. Mater.
30
,
1802405
(
2018
).
37.
Q.
Shi
,
T.
He
, and
C.
Lee
,
Nano Energy
57
,
851
(
2019
).
38.
W.
Paosangthong
,
R.
Torah
, and
S.
Beeby
,
Nano Energy
55
,
401
(
2019
).
39.
M.
Pozzi
and
M.
Zhu
,
Smart Mater. Struct.
20
,
055007
(
2011
).
40.
Y.
Kuang
,
Z.
Yang
, and
M.
Zhu
,
Smart Mater. Struct.
25
,
085029
(
2016
).
41.
A.
Abdelkefi
,
J. M.
Scanlon
,
E.
McDowell
, and
M. R.
Hajj
,
Appl. Phys. Lett.
103
,
033903
(
2013
).
42.
M. Y.
Zakaria
,
M. Y.
Al-Haik
, and
M. R.
Hajj
,
Appl. Phys. Lett.
107
,
023901
(
2015
).
43.
T.
He
,
Q.
Shi
,
H.
Wang
,
F.
Wen
,
T.
Chen
,
J.
Ouyang
, and
C.
Lee
,
Nano Energy
57
,
338
(
2019
).
44.
M.
Zhu
,
Q.
Shi
,
T.
He
,
Z.
Yi
,
Y.
Ma
,
B.
Yang
,
T.
Chen
, and
C.
Lee
,
ACS Nano
13
,
1940
(
2019
).
45.
Y.
Hu
and
Z.
Zheng
,
Nano Energy
56
,
16
(
2019
).
46.
F.
Gao
,
Y.
Liu
, and
W. H.
Liao
,
Smart Mater. Struct.
26
,
035034
(
2017
).
47.
J. M.
Brockway
,
Hum. Nutr.: Clin. Nutr.
41
,
463
(
1987
).
You do not currently have access to this content.