We developed a cryogenic objective mirror [Toratani-Fujiwara (TORA-FUJI) mirror] with a 36-μm field of view (FOV) radius and a 0.93 numerical aperture. The latest reported cryogenic objective mirror (INAGAWA mirror) under a superfluid-helium immersion condition had a nearly maximum numerical aperture (0.99) and was perfectly achromatic. However, its FOV radius was restricted to 1.5 μm, mainly due to coma aberration. In the TORA-FUJI mirror, correcting coma aberration realized the 36-μm FOV radius. In addition, the remaining four Seidel aberrations and the chromatic aberrations were sufficiently corrected. To evaluate the optical performance, the cryogenic fluorescence imaging of individual dyes was performed with the TORA-FUJI mirror at a 685-nm excitation wavelength. This result shows that the TORA-FUJI mirror in superfluid helium at 1.8 K exhibits nearly diffraction-limited performance in the FOV region.

1.
G. W.
Li
and
X. S.
Xie
,
Nature
475
(
7356
),
308
(
2011
).
2.
F.
Huang
,
G.
Sirinakis
,
E. S.
Allgeyer
,
L. K.
Schroeder
,
W. C.
Duim
,
E. B.
Kromann
,
T.
Phan
,
F. E.
Rivera-Molina
,
J. R.
Myers
,
I.
Irnov
,
M.
Lessard
,
Y. D.
Zhang
,
M. A.
Handel
,
C.
Jacobs-Wagner
,
C. P.
Lusk
,
J. E.
Rothman
,
D.
Toomre
,
M. J.
Booth
, and
J.
Bewersdorf
,
Cell
166
(
4
),
1028
(
2016
).
3.
Y. W.
Chang
,
S. Y.
Chen
,
E. I.
Tocheva
,
A.
Treuner-Lange
,
S.
Loebach
,
L.
Sogaard-Andersen
, and
G. J.
Jensen
,
Nat. Methods
11
(
7
),
737
(
2014
).
4.
R.
Kaufmann
,
P.
Schellenberger
,
E.
Seiradake
,
I. M.
Dobbie
,
E. Y.
Jones
,
I.
Davis
,
C.
Hagen
, and
K.
Grunewald
,
Nano Lett.
14
(
7
),
4171
(
2014
).
5.
B.
Liu
,
Y. H.
Xue
,
W.
Zhao
,
Y.
Chen
,
C. Y.
Fan
,
L. S.
Gu
,
Y. D.
Zhang
,
X.
Zhang
,
L.
Sun
,
X. J.
Huang
,
W.
Ding
,
F.
Sun
,
W.
Ji
, and
T.
Xu
,
Sci. Rep.
5
,
13017
(
2015
).
6.
L.
Wang
,
B.
Bateman
,
L. C.
Zanetti-Domingues
,
A. N.
Moores
,
S.
Astbury
,
C.
Spindloe
,
M. C.
Darrow
,
M.
Romano
,
S. R.
Needham
,
K.
Beis
,
D. J.
Rolfe
,
D. T.
Clarke
, and
M. L.
Martin-Fernandez
,
Commun. Biol.
2
,
74
(
2019
).
7.
H.
Inagawa
,
Y.
Toratani
,
K.
Motohashi
,
I.
Nakamura
,
M.
Matsushita
, and
S.
Fujiyoshi
,
Sci. Rep.
5
,
12833
(
2015
).
8.
T.
Furubayashi
,
K.
Motohashi
,
K.
Wakao
,
T.
Matsuda
,
I.
Kii
,
T.
Hosoya
,
N.
Hayashi
,
M.
Sadaie
,
F.
Ishikawa
,
M.
Matsushita
, and
S.
Fujiyoshi
,
J. Am. Chem. Soc.
139
(
26
),
8990
(
2017
).
9.
S.
Fujiyoshi
,
M.
Fujiwara
,
C.
Kim
,
M.
Matsushita
,
A. M.
van Oijen
, and
J.
Schmidt
,
Appl. Phys. Lett.
91
(
5
),
3
(
2007
).
10.
S.
Fujiyoshi
,
M.
Fujiwara
, and
M.
Matsushita
,
Phys. Rev. Lett.
100
(
16
),
168101
(
2008
).
11.
S.
Fujiyoshi
,
M.
Hirano
,
M.
Matsushita
,
M.
Iseki
, and
M.
Watanabe
,
Phys. Rev. Lett.
106
(
7
),
078101
(
2011
).
12.
W. E.
Moerner
and
D. P.
Fromm
,
Rev. Sci. Instrum.
74
(
8
),
3597
(
2003
).
13.
S.
Bolte
and
F. P.
Cordelieres
,
J. Microsc.
224
,
213
(
2006
).
14.
T.
Tanaami
,
S.
Otsuki
,
N.
Tomosada
,
Y.
Kosugi
,
M.
Shimizu
, and
H.
Ishida
,
Appl. Opt.
41
(
22
),
4704
(
2002
).
15.
A.
Nakano
,
Cell Struct. Funct.
27
(
5
),
349
(
2002
).
16.
S.
Hayashi
and
Y.
Okada
,
Mol. Biol. Cell
26
(
9
),
1743
(
2015
).
17.
E. F.
Burton
,
Nature
140
,
1015
(
1937
).
18.
R. E.
Thompson
,
D. R.
Larson
, and
W. W.
Webb
,
Biophys. J.
82
(
5
),
2775
(
2002
).
19.
H.
Tabe
,
K.
Sukenobe
,
T.
Kondo
,
A.
Sakurai
,
M.
Maruo
,
A.
Shimauchi
,
M.
Hirano
,
S.
Uno
,
M.
Kamiya
,
Y.
Urano
,
M.
Matsushita
, and
S.
Fujiyoshi
,
J. Phys. Chem. B
122
(
27
),
6906
(
2018
).

Supplementary Material

You do not currently have access to this content.