Vortex rectifications are well known as drifting vortices along an “easy” direction when asymmetric potential is introduced to break the inversion symmetry for the vortex motion. Using the time-dependent Ginzburg–Landau formalism, we show an approach to switch the reversal of vortex ratchets by a dynamic pinning landscape, which is highly tuned by varying the sliding velocity of the dynamic pinning potential and its characteristic sizes and densities. Besides the anticipated positive rectified voltage with an easy vortex motion along the sliding direction of dynamic pinning sites, contrary to intuition, we also observe a negative dc voltage with vortices moving preferentially uphill, i.e., against the sliding direction. The mechanism of such reversal of vortex ratchets is different from previous work, which is revealed based on the dragging effect on the vortex motion by the sliding pinning sites.

1.
M. O.
Magnasco
,
Phys. Rev. Lett.
71
,
1477
(
1993
).
2.
C.-S.
Lee
,
B.
Jankó
,
I.
Derényi
, and
A.-L.
Barabási
,
Nature
400
,
337
(
1999
).
3.
J. E.
Villegas
,
S.
Savelev
,
F.
Nori
,
E. M.
Gonzalez
,
J. V.
Anguita
,
R.
Garcia
, and
J. L.
Vicent
,
Science
302
,
1188
(
2003
).
4.
C. C.
de Souza Silva
,
J.
Van de Vondel
,
M.
Morelle
, and
V. V.
Moshchalkov
,
Nature
440
,
651
(
2006
).
5.
C. C.
de Souza Silva
,
A. V.
Silhanek
,
J.
Van de Vondel
,
W.
Gillijns
,
V.
Metlushko
,
B.
Ilic
, and
V. V.
Moshchalkov
,
Phys. Rev. Lett.
98
,
117005
(
2007
).
6.
W.
Gillijns
,
A. V.
Silhanek
,
V. V.
Moshchalkov
,
C. J. O.
Reichhardt
, and
C.
Reichhardt
,
Phys. Rev. Lett.
99
,
247002
(
2007
).
7.
J.
Van de Vondel
,
V. N.
Gladilin
,
A. V.
Silhanek
,
W.
Gillijns
,
J.
Tempere
,
J. T.
Devreese
, and
V. V.
Moshchalkov
,
Phys. Rev. Lett.
106
,
137003
(
2011
).
8.
Q.-M.
Lu
,
C. J.
Olson Reichhardt
, and
C.
Reichhardt
,
Phys. Rev. B
75
,
054502
(
2007
).
9.
G. R.
Berdiyorov
,
M. V.
Milošević
,
L.
Covaci
, and
F. M.
Peeters
,
Phys. Rev. Lett.
107
,
177008
(
2011
).
10.
A.
He
,
C.
Xue
, and
Y.-H.
Zhou
,
Chin. Phys. B
27
,
057402
(
2018
).
11.
B. Y.
Zhu
,
F.
Marchesoni
, and
F.
Nori
,
Phys. Rev. Lett.
92
,
180602
(
2004
).
12.
B. L. T.
Plourde
,
IEEE Trans. Appl. Supercond.
19
,
3698
(
2009
).
13.
S.
Ooi
,
T.
Mochikua
, and
K.
Hirataa
,
Physica C
468
,
1291
(
2008
).
14.
T. C.
Wu
,
L.
Horng
,
J. C.
Wu
,
R.
Cao
,
J.
Kolácek
, and
T. J.
Yang
,
J. Appl. Phys.
102
,
033918
(
2007
).
15.
C.
Reichhardt
,
D.
Ray
, and
C. J.
Olson Reichhardt
,
Phys. Rev. B
91
,
184502
(
2015
).
16.
D.
Cole
,
S.
Bending
,
S.
Savel'ev
,
A.
Grigorenko
,
T.
Tamegai
, and
F.
Nori
,
Nat. Mater.
5
,
305
(
2006
).
17.
S.
Ooi
,
S.
Savel'ev
,
M. B.
Gaifullin
,
T.
Mochiku
,
K.
Hirata
, and
F.
Nori
,
Phys. Rev. Lett.
99
,
207003
(
2007
).
18.
O.-A.
Adami
,
D.
Cerbu
,
D.
Cabosart
,
M.
Motta
,
J.
Cuppens
,
W. A.
Ortiz
,
V. V.
Moshchalkov
,
B.
Hackens
,
R.
Delamare
,
J.
Van de Vondel
, and
A. V.
Silhanek
,
Appl. Phys. Lett.
102
,
052603
(
2013
).
19.
J.-D.
Ji
,
J.
Yuan
,
G.
He
,
B.-H.
Jin
,
B.-Y.
Zhu
,
X.-D.
Kong
,
X.-Q.
Jia
,
L.
Kang
,
K.
Jin
, and
P.-H.
Wu
,
Appl. Phys. Lett.
109
,
242601
(
2016
).
20.
D.
Cerbu
,
V. N.
Gladilin
,
J.
Cuppens
,
J.
Fritzsche
,
J.
Tempere
,
J. T.
Devreese
,
V. V.
Moshchalkov
,
A. V.
Silhanek
, and
J.
Van de Vondel
,
New J. Phys.
15
,
063022
(
2013
).
21.
Y.-L.
Wang
,
X.
Ma
,
J.
Xu
,
Z.-L.
Xiao
,
A.
Snezhko
,
R.
Divan
,
L. E.
Ocola
,
J. E.
Pearson
,
B.
Janko
, and
W.-K.
Kwok
,
Nat. Nanotechnol.
13
,
560
(
2018
).
22.
Ž. L.
Jelić
,
M. V.
Milošević
,
J.
Van de Vondel
, and
A. V.
Silhanek
,
Sci. Rep.
5
,
14604
(
2015
).
23.
Ž. L.
Jelić
,
M. V.
Milošević
, and
A. V.
Silhanek
,
Sci. Rep.
6
,
35687
(
2016
).
24.
I.
Giaever
,
Phys. Rev. Lett.
16
,
460
(
1966
).
25.
P. R.
Solomon
,
Phys. Rev. Lett.
16
,
50
(
1966
).
26.
J. W.
Ekin
,
B.
Serin
, and
J. R.
Clem
,
Phys. Rev. B
9
,
912
(
1974
).
27.
C. W.
Bumby
,
Z.
Jiang
,
J. G.
Storey
,
A. E.
Pantoja
, and
R. A.
Badcock
,
Appl. Phys. Lett.
108
,
122601
(
2016
).
28.
P. J.
Rodrigo
,
R. L.
Eriksen
,
V. R.
Daria
, and
J.
Glückstad
,
Opt. Express
10
,
1550
(
2002
).
29.
M.
Brunner
and
C.
Bechinger
,
Phys. Rev. Lett.
88
,
248302
(
2002
).
30.
D. G.
Grier
,
Nature (London)
424
,
810
(
2003
).
31.
S. H.
Lee
,
K.
Ladavac
,
M.
Polin
, and
D. G.
Grier
,
Phys. Rev. Lett.
94
,
110601
(
2005
).
32.
A.
Libál
,
C.
Reichhardt
,
B.
Jankó
, and
C. J.
Olson Reichhardt
,
Phys. Rev. Lett.
96
,
188301
(
2006
).
33.
Y.
Roichman
,
V.
Wong
, and
D. G.
Grier
,
Phys. Rev. E
75
,
011407
(
2007
).
34.
M.
Righini
,
A. S.
Zelenina
,
C.
Girard
, and
R.
Quidant
,
Nat. Phys.
3
,
477
(
2007
).
35.
L.
Kramer
and
R. J.
Watts-Tobin
,
Phys. Rev. Lett.
40
,
1041
(
1978
).
36.
G.
Berdiyorov
,
K.
Harrabi
,
F.
Oktasendra
,
K.
Gasmi
,
A. I.
Mansour
,
J. P.
Maneval
, and
F. M.
Peeters
,
Phys. Rev. B
90
,
054506
(
2014
).
37.
R. J.
Watts-Tobin
,
Y.
Krähenbühl
, and
L.
Kramer
,
J. Low Temp. Phys.
42
,
459
(
1981
).
38.
G. R.
Berdiyorov
,
M. V.
Milošević
, and
F. M.
Peeters
,
Phys. Rev. B
79
,
184506
(
2009
).
39.
G. R.
Berdiyorov
,
M. V.
Milošević
,
M. L.
Latimer
,
Z. L.
Xiao
,
W. K.
Kwok
, and
F. M.
Peeters
,
Phys. Rev. Lett.
109
,
057004
(
2012
).

Supplementary Material

You do not currently have access to this content.