The present work describes a synthesis and characterization strategy employed to study the magnetic anisotropic properties of a diluted nanoparticulate system. The system under analysis is composed of monodisperse and highly crystalline 16 nm Co0.5Fe2.5O4 nanoparticles (NPs), homogenously dispersed in 1-octadecene. Owing to the liquid nature of the matrix at room temperature, the relative orientation of the nanoparticle easy axis can be controlled by an external magnetic field, enabling us to measure how the magnetic properties are modified by the alignment of the particles within the sample. In turn, by employing this strategy, we have found a significant hardness and squareness enhancement of the hysteresis loop in the magnetically oriented system, with the coercive field reaching a value as high as 30.2 kOe at low temperatures. In addition, the magnetic behavior associated with the system under study was supported by additional magnetic measurements, which were ascribed to different events expected to take place throughout the sample characterization, such as the melting process of the 1-octadecene matrix or the NP relaxation under the Brownian mechanism at high temperatures.

1.
H.
Sharifi Dehsari
and
K.
Asadi
,
J. Phys. Chem. C
122
,
29106
(
2018
).
2.
Q.
Song
and
Z. J.
Zhang
,
J. Am. Chem. Soc.
126
,
6164
(
2004
).
3.
T. E.
Torres
,
E.
Lima
,
A.
Mayoral
,
A.
Ibarra
,
C.
Marquina
,
M. R.
Ibarra
, and
G. F.
Goya
,
J. Appl. Phys.
118
,
183902
(
2015
).
4.
L. T.
Lu
,
N. T.
Dung
,
L. D.
Tung
,
C. T.
Thanh
,
O. K.
Quy
,
N. V.
Chuc
,
S.
Maenosono
, and
N. T. K.
Thanh
,
Nanoscale
7
,
19596
(
2015
).
5.
A.
Franco
and
F. C. E.
Silva
,
Appl. Phys. Lett.
96
,
172505
(
2010
).
6.
E.
Fantechi
,
G.
Campo
,
D.
Carta
,
A.
Corrias
,
C.
De Julián Fernández
,
D.
Gatteschi
,
C.
Innocenti
,
F.
Pineider
,
F.
Rugi
, and
C.
Sangregorio
,
J. Phys. Chem. C
116
,
8261
(
2012
).
7.
A.
Sathya
,
P.
Guardia
,
R.
Brescia
,
N.
Silvestri
,
G.
Pugliese
,
S.
Nitti
,
L.
Manna
, and
T.
Pellegrino
,
Chem. Mater.
28
,
1769
(
2016
).
8.
O.
Moscoso-Londoño
,
D.
Muraca
,
K. R.
Pirota
,
M.
Knobel
,
P.
Tancredi
,
L. M.
Socolovsky
,
P.
Mendoza Zélis
,
D.
Coral
,
M. B.
Fernández van Raap
,
U.
Wolff
,
V.
Neu
,
C.
Damm
, and
C. L. P.
de Oliveira
,
J. Magn. Magn. Mater.
428
,
105
(
2017
).
9.
P. C. R.
Rojas
,
P.
Tancredi
,
O. M.
Londoño
,
M.
Knobel
, and
L. M.
Socolovsky
,
J. Magn. Magn. Mater.
451
,
688
(
2018
).
10.
D.
Peddis
,
F.
Orrù
,
A.
Ardu
,
C.
Cannas
,
A.
Musinu
, and
G.
Piccaluga
,
Chem. Mater.
24
,
1062
(
2012
).
11.
J.
García-Otero
,
A. J.
García-Bastida
, and
J.
Rivas
,
J. Magn. Magn. Mater.
189
,
377
(
1998
).
12.
J. C.
Eloi
,
M.
Okuda
,
S.
Correia Carreira
,
W.
Schwarzacher
,
M. J.
Correia
, and
W.
Figueiredo
,
J. Phys.: Condens. Matter
26
,
146006
(
2014
).
13.
I.
Conde-Leborán
,
D.
Serantes
, and
D.
Baldomir
,
J. Magn. Magn. Mater.
380
,
321
(
2015
).
14.
F.
Ilievski
,
A.
Cuchillo
,
W.
Nunes
,
M.
Knobel
,
C. A.
Ross
, and
P.
Vargas
,
Appl. Phys. Lett.
95
,
202503
(
2009
).
15.
M.
Klokkenburg
,
B. H.
Erné
,
V.
Mendelev
, and
A. O.
Ivanov
,
J. Phys.: Condens. Matter
20
,
204113
(
2008
).
16.
M.
Klokkenburg
,
B. H.
Erné
, and
A. P.
Philipse
,
Langmuir
21
,
1187
(
2005
).
17.
Y.
Tamada
,
S.
Yamamoto
,
S.
Nasu
, and
T.
Ono
,
Phys. Rev. B
78
,
214428
(
2008
).
18.
G.
Shi
,
R.
Takeda
,
S. B.
Trisnanto
,
T.
Yamada
,
S.
Ota
, and
Y.
Takemura
,
J. Magn. Magn. Mater.
473
,
148
(
2019
).
19.
T.
Yoshida
,
Y.
Matsugi
,
N.
Tsujimura
,
T.
Sasayama
,
K.
Enpuku
,
T.
Viereck
,
M.
Schilling
, and
F.
Ludwig
,
J. Magn. Magn. Mater.
427
,
162
(
2017
).
20.
S. A.
Shah
,
D. B.
Reeves
,
R. M.
Ferguson
,
J. B.
Weaver
, and
K. M.
Krishnan
,
Phys. Rev. B
92
,
094438
(
2015
).
21.
D.
Peddis
,
C.
Cannas
,
A.
Musinu
,
A.
Ardu
,
F.
Orruì
,
D.
Fiorani
,
S.
Laureti
,
D.
Rinaldi
,
G.
Muscas
,
G.
Concas
, and
G.
Piccaluga
,
Chem. Mater.
25
,
2005
(
2013
).
22.
A. P.
Herrera
,
C.
Barrera
,
Y.
Zayas
, and
C.
Rinaldi
,
J. Colloid Interface Sci.
342
,
540
(
2010
).
23.
E. C.
Vreeland
,
J.
Watt
,
G. B.
Schober
,
B. G.
Hance
,
M. J.
Austin
,
A. D.
Price
,
B. D.
Fellows
,
T. C.
Monson
,
N. S.
Hudak
,
L.
Maldonado-Camargo
,
A. C.
Bohorquez
,
C.
Rinaldi
, and
D. L.
Huber
,
Chem. Mater.
27
,
6059
(
2015
).
24.
G.
Lavorato
,
M.
Alzamora
,
C.
Contreras
,
G.
Burlandy
,
F. J.
Litterst
, and
E.
Baggio-Saitovitch
,
Part. Part. Syst. Charact.
36
,
1900061
(
2019
).
25.
B.
Aslibeiki
,
P.
Kameli
,
H.
Salamati
,
G.
Concas
,
M.
Salvador Fernandez
,
A.
Talone
,
G.
Muscas
, and
D.
Peddis
,
Beilstein J. Nanotechnol.
10
,
856
(
2019
).
26.
K.
Gandha
,
K.
Elkins
,
N.
Poudyal
, and
J.
Ping Liu
,
J. Appl. Phys.
117
,
17A736
(
2015
).
27.
Y.
Melikhov
,
J. E.
Snyder
,
D. C.
Jiles
,
A. P.
Ring
,
J. A.
Paulsen
,
C. C. H.
Lo
, and
K. W.
Dennis
,
J. Appl. Phys.
99
,
08R102
(
2006
).
28.
D.
Li
,
H.
Yun
,
B. T.
Diroll
,
V. V. T.
Doan-Nguyen
,
J. M.
Kikkawa
, and
C. B.
Murray
,
Chem. Mater.
28
,
480
(
2016
).
29.
A.
López-Ortega
,
E.
Lottini
,
C. D. J.
Fernández
, and
C.
Sangregorio
,
Chem. Mater.
27
,
4048
(
2015
).
30.
N. A.
Usov
and
S. E.
Peschany
,
J. Magn. Magn. Mater.
174
,
247
(
1997
).
31.
S. T.
Xu
,
Y. Q.
Ma
,
G. H.
Zheng
, and
Z. X.
Dai
,
Nanoscale
7
,
6520
(
2015
).
32.
Y.
Kumar
,
A.
Sharma
,
M. A.
Ahmed
,
S. S.
Mali
,
C. K.
Hong
, and
P. M.
Shirage
,
New J. Chem.
42
,
15793
(
2018
).
33.
L.
Wu
,
P.-O.
Jubert
,
D.
Berman
,
W.
Imaino
,
A.
Nelson
,
H.
Zhu
,
S.
Zhang
, and
S.
Sun
,
Nano Lett.
14
,
3395
(
2014
).
34.
P.
De La Presa
,
Y.
Luengo
,
V.
Velasco
,
M. P.
Morales
,
M.
Iglesias
,
S.
Veintemillas-Verdaguer
,
P.
Crespo
, and
A.
Hernando
,
J. Phys. Chem. C
119
,
11022
(
2015
).
35.
R.
Di Corato
,
A.
Espinosa
,
L.
Lartigue
,
M.
Tharaud
,
S.
Chat
,
T.
Pellegrino
,
C.
Ménager
,
F.
Gazeau
, and
C.
Wilhelm
,
Biomaterials
35
,
6400
(
2014
).
You do not currently have access to this content.