We demonstrate a sensitive and compact terahertz heterodyne detection system based on a quantum cascade laser (QCL) as a local oscillator and a hot electron bolometer (HEB) as a mixer. It relies on an original optical coupling scheme where the terahertz (THz) signal to be detected and the local oscillator (LO) signal are coupled to the HEB from both sides of the integrated lens/antenna mixer. The THz signal of interest impinges on the front side through the silicon lens while the LO onto the rear (air) side. This concept allows us to remove the beam splitter usually employed in terahertz heterodyne receivers. The mixer consists of a Niobium Nitride HEB with a log-spiral planar antenna mounted on the flat side of a hyperhemispherical silicon lens. The local oscillator of the heterodyne detector is a low power consumption and low beam divergence 3rd-order distributed feedback laser with single mode emission at the target frequency of 2.7 THz. The coupling between the QCL and the HEB has been further optimized, using a dielectric hollow waveguide that reliably increases the laser beam directivity and permits us to pump the HEB into its most sensitive state through the air side of the planar antenna. We have measured a noncorrected double sideband receiver noise temperature of 880 K at 2.7 THz.

1.
2.
A.
Wootten
,
Large Ground-Based Telesc.
4837
,
110
(
2003
).
3.
S.
Heyminck
 et al,
Astron. Astrophys.
542
,
L1
(
2012
).
4.
C.
Risacher
 et al, in
International Conference on Infrared,
Millimeter, Terahertz Waves, IRMMW-THz (
2014
), pp.
1
2
.
5.
E. T.
Young
 et al,
Astrophys. J. Lett.
749
,
L17
(
2012
).
6.
C.
Risacher
 et al,
J. Astron. Instrum.
7
,
1840014
(
2018
).
7.
B. J.
Drouin
 et al,
J. Mol. Struct.
1006
,
2
(
2011
).
8.
R.
Köhler
 et al,
Nature
417
,
156
159
(
2002
).
9.
H.
Richter
 et al,
IEEE Trans. Terahertz Sci. Technol.
5
,
539
(
2015
).
10.
C.
Sirtori
 et al,
Nat. Photonics
7
,
691
(
2013
).
11.
Y.
Chassagneux
 et al,
Nature
457
,
174
(
2009
).
12.
G.
Xu
 et al,
Nat. Commun.
3
,
952
(
2012
).
13.
J. A.
Fan
 et al,
Opt. Express
14
,
11672
(
2006
).
14.
C.
Wu
 et al,
APL Photonics
2
,
026101
(
2017
).
15.
L.
Xu
 et al,
Appl. Phys. Lett.
107
,
221105
(
2015
).
16.
L.
Bosco
 et al,
Appl. Phys. Lett.
109
,
201103
(
2016
).
17.
M. I.
Amanti
 et al,
Nat. Photonics
3
,
586
(
2009
).
18.
T.-Y.
Kao
 et al,
Opt. Lett.
37
,
2070
(
2012
).
19.
T.-Y.
Kao
 et al,
Opt. Express
23
,
17091
(
2015
).
20.
R.
Degl'Innocenti
 et al,
Opt. Express
22
,
24439
(
2014
).
21.
A. A.
Danylov
 et al,
Appl. Opt.
46
,
5051
(
2007
).
22.
P.
Patimisco
 et al,
Sensors
13
,
1329
(
2013
).
23.
M.
Wienold
 et al,
Electron. Lett.
45
,
1030
(
2009
).
24.
P. B.
Vigneron
 et al,
Microelectron. Eng.
202
,
42
(
2018
).
25.
E. A. J.
Marcatili
and
R. A.
Schmeltzer
,
Bell Syst. Tech. J.
43
,
1783
(
1964
).
26.
J. J.
Degnan
,
Appl. Phys.
11
(
1
),
1
(
1976
).
27.
Y.
Delorme
 et al, in
22nd International Symposium on Space Terahertz Technology, ISSTT
(
2011
), pp.
123
126
.
28.
R.
Lefèvre
 et al, in
23rd International Symposium Space on Terahertz Technology, ISSTT
(
2012
), pp.
122
125
.
29.
See http://www.scontel.ru/ for the web address of the company.
30.
W.
Miao
 et al, in
Proceedings of the 8th International Symposium on Antennas, Propagation EM Theory, ISAPE (
2008
), pp.
58
61
.
31.
D.
Rabanus
 et al,
Opt. Express
17
,
1159
(
2009
).
32.
P.
Khosropanah
 et al,
Opt. Lett.
34
,
2958
(
2009
).
33.
S.
Barbieri
 et al,
Nat. Photonics
4
,
636
(
2010
).
34.
A.
Danylov
 et al,
Opt. Lett.
40
,
5090
(
2015
).
35.
J. R.
Freeman
 et al,
Optica
4
,
1059
(
2017
).

Supplementary Material

You do not currently have access to this content.