We experimentally demonstrate the stable trapping of a permanent magnet sphere above a lead superconductor, at vacuum pressures of 4×108 mbar. The levitating magnet behaves as a harmonic oscillator, with frequencies in the 4–31 Hz range detected, and shows promise to be an ultrasensitive acceleration sensor. We directly apply an acceleration to the magnet with a current carrying wire, which we use to measure a background noise of 1010m/Hz at 30.75 Hz frequency. With current experimental parameters, we find an acceleration sensitivity of Sa1/2=1.2±0.2×1010g/Hz, for a thermal noise limited system. By considering a 300 mK environment, at a background helium pressure of 1×1010 mbar, acceleration sensitivities of Sa1/23×1015g/Hz could be possible with ideal conditions and vibration isolation. To feasibly measure with such a sensitivity, feedback cooling must be implemented.

1.
D.
Rugar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chui
,
Nature
430
,
329
(
2004
).
2.
C. L.
Degen
,
M.
Poggio
,
H. J.
Mamin
,
C. T.
Rettner
, and
D.
Rugar
,
Proc. Natl. Acad. Sci.
106
,
1313
(
2009
).
3.
J.
Moser
,
J.
Güttinger
,
A.
Eichler
,
M. J.
Esplandiu
,
D. E.
Liu
,
M. I.
Dykman
, and
A.
Bachtold
,
Nat. Nanotechnol.
8
,
493
(
2013
).
4.
B. P.
Abbott
,
R.
Abbott
,
T. D.
Abbott
,
M. R.
Abernathy
,
F.
Acernese
,
K.
Ackley
,
C.
Adams
,
T.
Adams
,
P.
Addesso
,
R. X.
Adhikari
 et al,
Phys. Rev. Lett.
116
,
61102
(
2016
).
5.
G. L.
Klimchitskaya
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Rev. Mod. Phys.
81
,
1827
(
2009
).
6.
I.
Marson
,
Int. J. Geophys.
2012
,
1
.
7.
J.
Schmöle
,
M.
Dragosits
,
H.
Hepach
, and
M.
Aspelmeyer
,
Classical Quantum Gravity
33
,
125031
(
2016
).
8.
A.
Bassi
and
G.
Ghirardi
,
Phys. Rep.
379
,
257
(
2003
).
9.
A.
Bassi
,
K.
Lochan
,
S.
Satin
,
T. P.
Singh
, and
H.
Ulbricht
,
Rev. Mod. Phys.
85
,
471
(
2013
).
10.
A.
Geraci
and
H.
Goldman
,
Phys. Rev. D
92
,
062002
(
2015
).
11.
J.
Moser
,
A.
Eichler
,
J.
Güttinger
,
M. I.
Dykman
, and
A.
Bachtold
,
Nat. Nanotechnol.
9
,
1007
(
2014
).
12.
R.
Norte
,
J.
Moura
, and
S.
Gröblacher
,
Phys. Rev. Lett.
116
,
147202
(
2016
).
13.
C.
Reinhardt
,
T.
Müller
,
A.
Bourassa
, and
J. C.
Sankey
,
Phys. Rev. X
6
,
021001
(
2016
).
14.
J.
Vovrosh
,
M.
Rashid
,
D.
Hempston
,
J.
Bateman
,
M.
Paternostro
, and
H.
Ulbricht
,
J. Opt. Soc. Am. B
34
,
1421
(
2017
).
15.
J.
Gieseler
,
B.
Deutsch
,
R.
Quidant
, and
L.
Novotny
,
Phys. Rev. Lett.
109
,
103603
(
2012
).
16.
P. F.
Barker
and
M. N.
Shneider
,
Phys. Rev. A
81
,
023826
(
2010
).
17.
O.
Romero-Isart
,
M. L.
Juan
,
R.
Quidant
, and
J. I.
Cirac
,
New J. Phys.
12
,
033015
(
2010
).
18.
T.
Li
,
S.
Kheifets
,
D.
Medellin
, and
M. G.
Raizen
,
Science
328
,
1673
(
2010
).
19.
N.
Kiesel
,
F.
Blaser
,
U.
Delić
,
D.
Grass
,
R.
Kaltenbaek
, and
M.
Aspelmeyer
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
14180
(
2013
).
20.
D. E.
Chang
,
C. A.
Regal
,
S. B.
Papp
,
D. J.
Wilson
,
J.
Ye
,
O.
Painter
,
H. J.
Kimble
, and
P.
Zoller
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
1005
(
2010
).
21.
D.
Hempston
,
J.
Vovrosh
,
M.
Toroš
,
G.
Winstone
,
M.
Rashid
, and
H.
Ulbricht
,
Appl. Phys. Lett.
111
,
133111
(
2017
).
22.
J.
Gieseler
,
L.
Novotny
, and
R.
Quidant
,
Nat. Phys.
9
,
806
(
2013
).
23.
G.
Winstone
,
R.
Bennett
,
M.
Rademacher
,
M.
Rashid
,
S.
Buhmann
, and
H.
Ulbricht
,
Phys. Rev. A
98
,
053831
(
2018
).
24.
R.
Diehl
,
E.
Hebestreit
,
R.
Reimann
,
F.
Tebbenjohanns
,
M.
Frimmer
, and
L.
Novotny
,
Phys. Rev. A
98
,
013851
(
2018
).
25.
M.
Armano
,
H.
Audley
,
G.
Auger
,
J. T.
Baird
,
M.
Bassan
,
P.
Binetruy
,
M.
Born
,
D.
Bortoluzzi
,
N.
Brandt
,
M.
Caleno
 et al,
Phys. Rev. Lett.
116
,
231101
(
2016
).
26.
J. M.
Goodkind
,
Rev. Sci. Instrum.
70
,
4131
(
1999
).
27.
A.
Vinante
,
A.
Pontin
,
M.
Rashid
,
M.
Toroš
,
P. F.
Barker
, and
H.
Ulbricht
,
Phys. Rev. A
100
,
012119
(
2019
).
28.
O.
Romero-Isart
,
L.
Clemente
,
C.
Navau
,
A.
Sanchez
, and
J. I.
Cirac
,
Phys. Rev. Lett.
109
,
147205
(
2012
).
29.
M.
Cirio
,
G. K.
Brennen
, and
J.
Twamley
,
Phys. Rev. Lett.
109
,
147206
(
2012
).
30.
H.
Pino
,
J.
Prat-Camps
,
K.
Sinha
,
B. P.
Venkatesh
, and
O.
Romero-Isart
,
Quantum Sci. Technol.
3
,
025001
(
2018
).
31.
M. T.
Johnsson
,
G. K.
Brennen
, and
J.
Twamley
,
Sci. Rep.
6
,
37495
(
2016
).
32.
J.
Prat-Camps
,
C.
Teo
,
C.
Rusconi
,
W.
Wieczorek
, and
O.
Romero-Isart
,
Phys. Rev. Appl.
8
,
034002
(
2017
).
33.
D. F.
Jackson Kimball
,
A. O.
Sushkov
, and
D.
Budker
,
Phys. Rev. Lett.
116
,
10797114
(
2016
).
34.
J.-F.
Hsu
,
P.
Ji
,
C. W.
Lewandowski
, and
B.
D'Urso
,
Sci. Rep.
6
,
30125
(
2016
).
35.
B. R.
Slezak
,
C. W.
Lewandowski
,
J.-F.
Hsu
, and
B.
D'Urso
,
New J. Phys.
20
,
063028
(
2018
).
36.
W. M.
Klahold
,
C. W.
Lewandowski
,
P.
Nachman
,
B. R.
Slezak
, and
B.
D'Urso
,
Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology
(
International Society for Optics and Photonics
,
2019
), Vol.
10934
, p.
109340P
.
37.
T.
Wang
,
S.
Lourette
,
S. R.
O'Kelley
,
M.
Kayci
,
Y. B.
Band
,
D. F.
Kimball
,
A. O.
Sushkov
, and
D.
Budker
,
Phys. Rev. Appl.
11
,
23317019
(
2019
).
38.
M. S.
Alnæs
,
J.
Blechta
,
J.
Hake
,
A.
Johansson
,
B.
Kehlet
,
A.
Logg
,
C.
Richardson
,
J.
Ring
,
M. E.
Rognes
, and
G. N.
Wells
,
Arch. Numer. Software
3
,
9
23
(
2015
).
39.

The Earth's magnetic field in Southampton, UK (at sea level) has a vertical component of 44 469.57 nT and a horizontal component of 19 813.59 nT.

40.
E.
Majorana
and
Y.
Ogawa
,
Phys. Lett. A
233
,
162
(
1997
).
41.
S. A.
Beresnev
,
V. G.
Chernyak
, and
G. A.
Fomyagin
,
J. Fluid Mech.
219
,
405
(
1990
).
42.
A. A.
Geraci
,
S. B.
Papp
, and
J.
Kitching
,
Phys. Rev. Lett.
105
,
101101
(
2010
).
43.
L.
Ferialdi
,
A.
Setter
,
M.
Toroš
,
C.
Timberlake
, and
H.
Ulbricht
,
New J. Phys.
21
,
073019
(
2019
).
44.
F.
Tebbenjohanns
,
M.
Frimmer
,
A.
Militaru
,
V.
Jain
, and
L.
Novotny
,
Phys. Rev. Lett.
122
,
223601
(
2019
).
45.
Z.
Ze-Bing
,
L.
Jun
,
Y.
Qin
,
Z.
Yuan-Zhong
, and
N.
Yu-Xin
,
Chin. Phys. Lett.
18
,
10
(
2001
).
46.
H.
Cavendish
,
Philos. Trans. R. Soc. London
88
,
469
(
1798
).
You do not currently have access to this content.