Graphene foam (GF)—a three-dimensional porous structure that comprises several graphene layers—has excellent physical properties and, consequently, exciting possible applications. In this work, we report the mechanical behavior of GFs that were grown using high-temperature chemical vapor deposition (CVD) and subjected to electrostatic tensile loads. We show that such loads reduce the mechanical stiffness of the GF (Young's modulus in the kilo-Pascal range) and release prestresses generated during growth. In addition, GF demonstrates electrostatic resonance. By characterizing the fundamental electromechanical behavior of GF, this Letter paves the way toward the development of novel GF-based devices, such as GF electrostatic resonant sensors, flexible capacitors, and micro- and nanoelectromechanical devices.

1.
H.
Zhao
and
N. R.
Aluru
, “
Temperature and strain-rate dependent fracture strength of graphene
,”
J. Appl. Phys.
108
(
6
),
064321
(
2010
).
2.
M.
Dvorak
,
W.
Oswald
, and
Z.
Wu
, “
Bandgap opening by patterning graphene
,”
Sci. Rep.
3
,
2289
(
2013
).
3.
S.-E.
Zhu
,
M. K.
Ghatkesar
,
C.
Zhang
, and
G. C. A. M.
Janssen
, “
Graphene based piezoresistive pressure sensor
,”
Appl. Phys. Lett.
102
(
16
),
161904
(
2013
).
4.
J.
Scott Bunch
,
A. M.
Van Der Zande
,
S. S.
Verbridge
,
I. W.
Frank
,
D. M.
Tanenbaum
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
, “
Electromechanical resonators from graphene sheets
,”
Science
315
(
5811
),
490
493
(
2007
).
5.
M. T.
Pettes
,
H.
Ji
,
R. S.
Ruoff
, and
L.
Shi
, “
Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite
,”
Nano Lett.
12
(
6
),
2959
2964
(
2012
).
6.
D. A. C.
Brownson
,
L. C. S.
Figueiredo-Filho
,
X.
Ji
,
M.
Gómez-Mingot
,
J.
Iniesta
,
O.
Fatibello-Filho
,
D. K.
Kampouris
, and
C. E.
Banks
, “
Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media
,”
J. Mater. Chem. A
1
(
19
),
5962
5972
(
2013
).
7.
H.
Ren
,
M.
Tang
,
B.
Guan
,
K.
Wang
,
J.
Yang
,
F.
Wang
,
M.
Wang
,
J.
Shan
,
Z.
Chen
,
D.
Wei
 et al, “
Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion
,”
Adv. Mater.
29
(
38
),
1702590
(
2017
).
8.
G. S.
Jung
and
M. J.
Buehler
, “
Multiscale mechanics of triply periodic minimal surfaces of three-dimensional graphene foams
,”
Nano Lett.
18
(
8
),
4845
4853
(
2018
).
9.
S. K.
Reddy
,
D. B.
Ferry
, and
A.
Misra
, “
Highly compressible behavior of polymer mediated three-dimensional network of graphene foam
,”
RSC Adv.
4
(
91
),
50074
50080
(
2014
).
10.
A.
Nieto
,
B.
Boesl
, and
A.
Agarwal
, “
Multi-scale intrinsic deformation mechanisms of 3D graphene foam
,”
Carbon
85
,
299
308
(
2015
).
11.
Y.
Wu
,
N.
Yi
,
L.
Huang
,
T.
Zhang
,
S.
Fang
,
H.
Chang
,
N.
Li
,
J.
Oh
,
J. A.
Lee
,
M.
Kozlov
 et al, “
Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio
,”
Nature Commun.
6
,
6141
(
2015
).
12.
P.
Nautiyal
,
B.
Boesl
, and
A.
Agarwal
, “
The mechanics of energy dissipation in a three-dimensional graphene foam with macroporous architecture
,”
Carbon
132
,
59
64
(
2018
).
13.
Z.
Chen
,
W.
Ren
,
L.
Gao
,
B.
Liu
,
S.
Pei
, and
H.-M.
Cheng
, “
Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
,”
Nat. Mater.
10
(
6
),
424
(
2011
).
14.
Z.-S.
Wu
,
A.
Winter
,
L.
Chen
,
Y.
Sun
,
A.
Turchanin
,
X.
Feng
, and
K.
Müllen
, “
Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors
,”
Adv. Mater.
24
(
37
),
5130
5135
(
2012
).
15.
Z.-S.
Wu
,
Y.
Sun
,
Y.-Z.
Tan
,
S.
Yang
,
X.
Feng
, and
K.
Müllen
, “
Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage
,”
J. Am. Chem. Soc.
134
(
48
),
19532
19535
(
2012
).
16.
R.
Xu
,
Y.
Lu
,
C.
Jiang
,
J.
Chen
,
P.
Mao
,
G.
Gao
,
L.
Zhang
, and
S.
Wu
, “
Facile fabrication of three-dimensional graphene foam/poly (dimethylsiloxane) composites and their potential application as strain sensor
,”
ACS Appl. Mater. Interfaces
6
(
16
),
13455
13460
(
2014
).
17.
Y. A.
Samad
,
Y.
Li
,
S. M.
Alhassan
, and
K.
Liao
, “
Novel graphene foam composite with adjustable sensitivity for sensor applications
,”
ACS Appl. Mater. Interfaces
7
(
17
),
9195
9202
(
2015
).
18.
R.
Xu
,
H.
Zhang
,
Y.
Cai
,
J.
Ruan
,
K.
Qu
,
E.
Liu
,
X.
Ni
,
M.
Lu
, and
X.
Dong
, “
Flexible and wearable 3D graphene sensor with 141 khz frequency signal response capability
,”
Appl. Phys. Lett.
111
(
10
),
103501
(
2017
).
19.
Z.
Chen
,
C.
Xu
,
C.
Ma
,
W.
Ren
, and
H.-M.
Cheng
, “
Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding
,”
Adv. Mater.
25
(
9
),
1296
1300
(
2013
).
20.
Y.
Zhao
,
J.
Liu
,
Y.
Hu
,
H.
Cheng
,
C.
Hu
,
C.
Jiang
,
L.
Jiang
,
A.
Cao
, and
L.
Qu
, “
Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes
,”
Adv. Mater.
25
(
4
),
591
595
(
2013
).
21.
M.
Zhou
,
T.
Lin
,
F.
Huang
,
Y.
Zhong
,
Z.
Wang
,
Y.
Tang
,
H.
Bi
,
D.
Wan
, and
J.
Lin
, “
Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage
,”
Adv. Funct. Mater.
23
(
18
),
2263
2269
(
2013
).
22.
F.
Yavari
,
Z.
Chen
,
A. V.
Thomas
,
W.
Ren
,
H.-M.
Cheng
, and
N.
Koratkar
, “
High sensitivity gas detection using a macroscopic three-dimensional graphene foam network
,”
Sci. Rep.
1
,
166
(
2011
).
23.
X.
Zhang
,
K. K.
Yeung
,
Z.
Gao
,
J.
Li
,
H.
Sun
,
H.
Xu
,
K.
Zhang
,
M.
Zhang
,
Z.
Chen
,
M. M. F.
Yuen
 et al, “
Exceptional thermal interface properties of a three-dimensional graphene foam
,”
Carbon
66
,
201
209
(
2014
).
24.
T. G.
Kollie
, “
Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 k and determination of the power-law constants near the curie temperature
,”
Phys. Rev. B
16
(
11
),
4872
(
1977
).
25.
D.
Yoon
,
Y.-W.
Son
, and
H.
Cheong
, “
Negative thermal expansion coefficient of graphene measured by Raman spectroscopy
,”
Nano Lett.
11
(
8
),
3227
3231
(
2011
).
26.
H.
Ghasemi
and
A.
Rajabpour
, “
Thermal expansion coefficient of graphene using molecular dynamics simulation: A comparative study on potential functions
,”
J. Phys.: Conf. Ser.
785
,
012006
(
2017
).
27.
V.
Singh
,
S.
Sengupta
,
H. S.
Solanki
,
R.
Dhall
,
A.
Allain
,
S.
Dhara
,
P.
Pant
, and
M. M.
Deshmukh
, “
Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators
,”
Nanotechnology
21
(
16
),
165204
(
2010
).
28.
A.
Ya'akobovitz
,
M.
Bedewy
,
A.
Rao
, and
A.
John Hart
, “
Strain relaxation and resonance of carbon nanotube forests under electrostatic loading
,”
Carbon
96
,
250
258
(
2016
).
29.
A.
Ya'akobovitz
,
D.
Copic
,
J. D.
Beroz
, and
A.
John Hart
, “
Nanoscale displacement measurement of microdevices via interpolation-based edge tracking of optical images
,”
J. Micromech. Microeng.
23
(
4
),
045004
(
2013
).
30.
Y. K.
Shen
and
H. A.
Wu
, “
Interlayer shear effect on multilayer graphene subjected to bending
,”
Appl. Phys. Lett.
100
(
10
),
101909
(
2012
).
31.
T. M. G.
Mohiuddin
,
A.
Lombardo
,
R. R.
Nair
,
A.
Bonetti
,
G.
Savini
,
R.
Jalil
,
N.
Bonini
,
D. M.
Basko
,
C.
Galiotis
,
N.
Marzari
 et al, “
Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation
,”
Phys. Rev. B
79
(
20
),
205433
(
2009
).

Supplementary Material

You do not currently have access to this content.