We study a reference frame independent (RFI) quantum key distribution (QKD) protocol using six states for Alice and only four states for Bob, while previous RFI protocols require a six state analyzer for Bob. Our protocol can generate a secure key for any possible phase of the entangled state provided the variation is small compared to the measurement rate, as shown by our numerical key rate analysis. We perform a proof-of-principle experiment using polarization entangled photon pairs. In the presence of a varying rotational phase, we obtain a consistently low error rate of less than 4%, indicating the feasibility of this protocol for QKD. Our RFI protocol is hence beneficial but not limited to applications in a satellite or mobile free-space QKD, where a communication node must limit the resources and restrict the number of measured states to four instead of six.

1.
V.
Scarani
,
H.
Bechmann-Pasquinucci
,
N. J.
Cerf
,
M.
Dušek
,
N.
Lütkenhaus
, and
M.
Peev
, “
The security of practical quantum key distribution
,”
Rev. Mod. Phys.
81
,
1301
1350
(
2009
).
2.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,” in
Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing
,
Bangalore, India
(
1984
), pp.
175
179
.
3.
C. H.
Bennett
,
G.
Brassard
, and
N. D.
Mermin
, “
Quantum cryptography without Bell's theorem
,”
Phys. Rev. Lett.
68
,
557
(
1992
).
4.
D.
Bruß
, “
Optimal eavesdropping in quantum cryptography with six states
,”
Phys. Rev. Lett.
81
,
3018
3021
(
1998
).
5.
A.
Laing
,
V.
Scarani
,
J. G.
Rarity
, and
J. L.
O'Brien
, “
Reference-frame-independent quantum key distribution
,”
Phys. Rev. A
82
,
012304
(
2010
).
6.
F. M.
Spedalieri
, “
Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum
,”
Opt. Commun.
260
,
340
346
(
2006
).
7.
A.
Beheshti
,
S.
Raeisi
, and
V.
Karimipour
, “
Entanglement-assisted communication in the absence of shared reference frame
,”
Phys. Rev. A
99
,
042330
(
2019
).
8.
L. P.
Thinh
,
L.
Sheridan
, and
V.
Scarani
, “
Tomographic quantum cryptography protocols are reference frame independent
,”
Int. J. Quantum Inf.
10
,
1250035
(
2012
).
9.
J.
Noda
,
K.
Okamoto
, and
Y.
Sasaki
, “
Polarization-maintaining fibers and their applications
,”
J. Lightwave Technol.
4
,
1071
1089
(
1986
).
11.
J.
Yoon
,
T.
Pramanik
,
B.-K.
Park
,
Y.-W.
Cho
,
S.-Y.
Lee
,
S.
Kim
,
S.-W.
Han
,
S.
Moon
, and
Y.-S.
Kim
, “
Experimental comparison of various quantum key distribution protocols under reference frame rotation and fluctuation
,”
Opt. Commun.
441
,
64
68
(
2019
).
12.
G.
Brassard
and
L.
Salvail
, “
Lecture notes in computer science
,” in
Advances in Cryptology EUROCRYPT'93
(
1994
), Vol.
765
, pp.
410
423
.
13.
N.
Lütkenhaus
, “
Security against individual attacks for realistic quantum key distribution
,”
Phys. Rev. A
61
,
052304
(
2000
).
14.
T.
Kim
,
M.
Fiorentino
, and
F. N. C.
Wong
, “
Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer
,”
Phys. Rev. A
73
,
012316
(
2006
).
15.
M.
Shtaif
,
C.
Antonelli
, and
M.
Brodsky
, “
Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons
,”
Opt. Express
19
,
1728
1733
(
2011
).
16.
G.
Kulkarni
,
P.
Kumar
, and
A. K.
Jha
, “
Transfer of temporal coherence in parametric down-conversion
,”
J. Opt. Soc. Am. B
34
,
1637
1643
(
2017
).
17.

In (b), a half-wave plate (HWP) rotated about its vertical axis with its fast axis aligned to the horizontally polarized photons is used to induce a phase. It is the first HWP found after the output on the Alice's side; see * in Fig. 1.

18.

The spike in the key rate around 40 s in (b) is attributed to the imperfections in the projective measurements, and variations in the coupling efficiencies caused by changing the phase of the state. Both caused a change in the expectation values that increased C. Furthermore, the spike indicates how a slight change of detection efficiencies could impact the key rate, which future security analyses will need to take in consideration as unreliable measurement devices.

19.
A.
Winick
,
N.
Lütkenhaus
, and
P. J.
Coles
, “
Reliable numerical key rates for quantum key distribution
,”
Quantum
2
,
77
(
2018
).
20.
Y. S.
Teo
,
J.
Řeháček
, and
Z.
Hradil
, “
Informationally incomplete quantum tomography
,”
Quantum Meas. Quantum Metrology
1
,
57
83
(
2013
).
21.
J.
Řeháček
,
Z. c v
Hradil
,
E.
Knill
, and
A. I.
Lvovsky
, “
Diluted maximum-likelihood algorithm for quantum tomography
,”
Phys. Rev. A
75
,
042108
(
2007
).
22.
J.
Shang
,
Z.
Zhang
, and
H. K.
Ng
, “
Superfast maximum-likelihood reconstruction for quantum tomography
,”
Phys. Rev. A
95
,
062336
(
2017
).
23.

Our selection of the MLM is not restrictive and we could choose other tomography methods.

24.
Y.
Cao
,
Y.-H.
Li
,
W.-J.
Zou
,
Z.-P.
Li
,
Q.
Shen
,
S.-K.
Liao
,
J.-G.
Ren
,
J.
Yin
,
Y.-A.
Chen
,
C.-Z.
Peng
, and
J.-W.
Pan
, “
Bell test over extremely high-loss channels: Towards distributing entangled photon pairs between earth and the moon
,”
Phys. Rev. Lett.
120
,
140405
(
2018
).
25.
C.
Erven
,
X.
Ma
,
R.
Laflamme
, and
G.
Weihs
, “
Entangled quantum key distribution with a biased basis choice
,”
New J. Phys.
11
,
045025
(
2009
).
26.
J.
Wang
,
H.
Liu
,
H.
Ma
, and
S.
Sun
, “
Experimental study of four-state reference-frame-independent quantum key distribution with source flaws
,”
Phys. Rev. A
99
,
032309
(
2019
).
27.
H.
Liu
,
J.
Wang
,
H.
Ma
, and
S.
Sun
, “
Reference-frame-independent quantum key distribution using fewer states
,”
Phys. Rev. Appl.
12
,
034039
(
2019
).
28.
H.
Zhang
,
C.-H.
Zhang
,
C.-M.
Zhang
,
G.-C.
Guo
, and
Q.
Wang
, “
Enhanced measurement-device-independent quantum key distribution in reference-frame-independent scenario
,”
JOSA B
36
,
476
481
(
2019
).
29.
C.
Wang
,
Z.-Q.
Yin
,
S.
Wang
,
W.
Chen
,
G.-C.
Guo
, and
Z.-F.
Han
, “
Measurement-device-independent quantum key distribution robust against environmental disturbances
,”
Optica
4
,
1016
1023
(
2017
).
You do not currently have access to this content.