We use electromigration for in situ control of the electrical impedance of nanoelectromechanical resonators, the vibrations of which are detected with magnetomotive detection. The resonator consists of a doubly clamped, suspended silicon nitride beam with a gold nanowire fabricated on top. A constriction is present in the gold nanowire near the middle of the beam. As fabricated, the impedance of the device is smaller than the cable impedance of 50 Ω so that the mechanical resonance of the beam appears as a minimum on a background of the reflected ac signal in a perpendicular magnetic field. We decrease the width of the junction by inducing controlled electromigration of the gold atoms near the junction. As the electrical resistance of the nanowire is increased to near 50 Ω, the reflection background is minimized. With the vibration phase accurately measured, self-sustained oscillations of the beam resonator are excited using a phase-locked loop for a wide range of phase delay between the response and the drive. By optimizing the impedance of the nanobeam, we measure all three branches of the Duffing oscillator, including the middle one that is unstable when the driving frequency is swept without the phase-locked loop. Electromigration could serve as a versatile tool to enhance the performance of nanomechanical resonators as sensors and clocks.

1.
D.
Rugar
,
R.
Budakian
,
H. J.
Mamin
, and
B. W.
Chui
,
Nature
430
,
329
332
(
2004
).
2.
A.
Naik
,
O.
Buu
,
M. D.
LaHaye
,
A. D.
Armour
,
A. A.
Clerk
,
M. P.
Blencowe
, and
K. C.
Schwab
,
Nature
443
,
193
196
(
2006
).
3.
J.
Chaste
,
A.
Eichler
,
J.
Moser
,
G.
Ceballos
,
R.
Rurali
, and
A.
Bachtold
,
Nat. Nanotechnol.
7
,
301
304
(
2012
).
4.
D.
Antonio
,
D. H.
Zanette
, and
D.
Lopez
,
Nat. Commun.
3
,
806
(
2012
).
5.
D. S.
Greywall
,
B.
Yurke
,
P. A.
Busch
,
A. N.
Pargellis
, and
R. L.
Willett
,
Phys. Rev. Lett.
72
,
2992
2995
(
1994
).
6.
X. L.
Feng
,
C. J.
White
,
A.
Hajimiri
, and
M. L.
Roukes
,
Nat. Nanotechnol.
3
,
342
346
(
2008
).
7.
P. A.
Truitt
,
J. B.
Hertzberg
,
C. C.
Huang
,
K. L.
Ekinci
, and
K. C.
Schwab
,
Nano Lett.
7
,
120
126
(
2007
).
8.
R. B.
Karabalin
,
M. H.
Matheny
,
X. L.
Feng
,
E.
Defay
,
G.
Le Rhun
,
C.
Marcoux
,
S.
Hentz
,
P.
Andreucci
, and
M. L.
Roukes
,
Appl. Phys. Lett.
95
,
103111
(
2009
).
9.
D. W.
Carr
,
L.
Sekaric
, and
H. G.
Craighead
,
J. Vac. Sci. Technol., B
16
,
3821
3824
(
1998
).
10.
M.
Li
,
W. H. P.
Pernice
,
C.
Xiong
,
T.
Baehr-Jones
,
M.
Hochberg
, and
H. X.
Tang
,
Nature
456
,
480–U28
(
2008
).
11.
K. L.
Ekinci
,
Y. T.
Yang
,
X. M. H.
Huang
, and
M. L.
Roukes
,
Appl. Phys. Lett.
81
,
2253
(
2002
).
12.
A. K.
Naik
,
M. S.
Hanay
,
W. K.
Hiebert
,
X. L.
Feng
, and
M. L.
Roukes
,
Nat. Nanotechnol.
4
,
445
450
(
2009
).
13.
H.
Park
,
A. K. L.
Lim
,
A. P.
Alivisatos
,
J.
Park
, and
P. L.
McEuen
,
Appl. Phys. Lett.
75
,
301
303
(
1999
).
14.
H.
Park
,
J.
Park
,
A. K.
Lim
,
E. H.
Anderson
,
A. P.
Alivisatos
, and
P. L.
McEuen
,
Nature
407
,
57
60
(
2000
).
15.
J.
Park
,
A. N.
Pasupathy
,
J. I.
Goldsmith
,
C.
Chang
,
Y.
Yaish
,
J. R.
Petta
,
M.
Rinkoski
,
J. P.
Sethna
,
H. D.
Abruna
,
P. L.
McEuen
, and
D. C.
Ralph
,
Nature
417
,
722
725
(
2002
).
16.
A. A.
Houck
,
J.
Labaziewicz
,
E. K.
Chan
,
J. A.
Folk
, and
I. L.
Chuang
,
Nano Lett.
5
,
1685
1688
(
2005
).
17.
G.
Gardinowski
,
J.
Schmeidel
,
H.
Pfnur
,
T.
Block
, and
C.
Tegenkamp
,
Appl. Phys. Lett.
89
,
063120
(
2006
).
18.
N.
Ittah
,
I.
Yutsis
, and
Y.
Selzer
,
Nano Lett.
8
,
3922
3927
(
2008
).
19.
R.
Hoffmann
,
D.
Weissenberger
,
J.
Hawecker
, and
D.
Stoffler
,
Appl. Phys. Lett.
93
,
043118
(
2008
).
20.
P.
Motto
,
A.
Dimonte
,
I.
Rattalino
,
D.
Demarchi
,
G.
Piccinini
, and
P.
Civera
,
Nanoscale Res. Lett.
7
,
1
9
(
2012
).
21.
L.
Arzubiaga
,
F.
Golmar
,
R.
Llopis
,
F.
Casanova
, and
L. E.
Hueso
,
Appl. Phys. Lett.
102
,
193103
(
2013
).
22.
A.
Chatterjee
,
T.
Heidenblut
,
F.
Edler
,
E.
Olsen
,
J. P.
Stockmann
,
C.
Tegenkamp
, and
H.
Pfnur
,
Appl. Phys. Lett.
113
,
013106
(
2018
).
23.
N. E.
Flowers-Jacobs
,
D. R.
Schmidt
, and
K. W.
Lehnert
,
Phys. Rev. Lett.
98
,
096804
(
2007
).
24.
J. M.
Campbell
and
R. G.
Knobel
,
Appl. Phys. Lett.
102
,
023105
(
2013
).
25.
D. R.
Strachan
,
D. E.
Smith
,
D. E.
Johnston
,
T. H.
Park
,
M. J.
Therien
,
D. A.
Bonnell
, and
A. T.
Johnson
,
Appl. Phys. Lett.
86
,
043109
(
2005
).
26.
Z. M.
Wu
,
M.
Steinacher
,
R.
Huber
,
M.
Calame
,
S. J.
van der Molen
, and
C.
Schonenberger
,
Appl. Phys. Lett.
91
,
053118
(
2007
).
27.
A. N.
Cleland
and
M. L.
Roukes
,
Sens. Actuators, A
72
,
256
261
(
1999
).
28.
G.
Esen
and
M. S.
Fuhrer
,
Appl. Phys. Lett.
87
,
263101
(
2005
).
29.
T.
Taychatanapat
,
K. I.
Bolotin
,
F.
Kuemmeth
, and
D. C.
Ralph
,
Nano Lett.
7
,
652
656
(
2007
).
30.
A.
Xiang
,
S.
Hou
, and
J.
Liao
,
Appl. Phys. Lett.
104
,
223113
(
2014
).
31.
U.
Kemiktarak
,
T.
Ndukum
,
K. C.
Schwab
, and
K. L.
Ekinci
,
Nature
450
,
85
(
2007
).

Supplementary Material

You do not currently have access to this content.