The traditional multiwave mixing setups are always complicated because multiple laser beams are involved, and they are required to be aligned into certain spatial configurations to get the phase-matching condition satisfied. Here, we report on a multiwave mixing method using a single vector optical field. The spatially separated phase-matching beams are obtained after the vector light passes through a polarizer. Filtering out part(s) of them and focusing the remaining ones into the Rb vapor cell, we detected degenerate four-wave mixing, degenerate six-wave mixing, and coexisting degenerate four-wave mixing signals under different circumstances. As the beams participating in the multiwave mixing processes originate from the same phase plane of the vector laser beam, their relative positions are fixed for the setup so that this method has the potential to resist for turbulence compared with the traditional methods. Besides, the entire system is simple and easy to align because the complicated optical setup is avoided. This work provides a convenient tool for multiwave mixing generation and has great potential in spectroscopy, light squeezing, nonlinear optics, and so on.

1.
C. F.
Mccormick
,
V.
Boyer
,
E.
Arimondo
, and
P. D.
Lett
,
Opt. Lett.
32
,
178
(
2007
).
2.
J.
Cheng
,
M. E. V.
Pedersen
,
K.
Charan
,
K.
Wang
,
C.
Xu
,
L.
Grüner-Nielsen
, and
D.
Jakobsen
,
Appl. Phys. Lett.
101
,
161106
(
2012
).
3.
L.
Cao
,
W.
Wang
,
Y.
Lou
,
J.
Du
, and
J.
Jing
,
Appl. Phys. Lett.
112
,
251102
(
2018
).
4.
V.
Boyer
,
A. M.
Marino
,
R. C.
Pooser
, and
P. D.
Lett
,
Science
321
,
544
(
2008
).
5.
M. W.
Holtfrerich
and
A. M.
Marino
,
Phys. Rev. A
93
,
063821
(
2016
).
6.
A.
Macrae
,
T.
Brannan
,
R.
Achal
, and
A. I.
Lvovsky
,
Phys. Rev. Lett.
109
,
033601
(
2012
).
7.
M. W.
Holtfrerich
,
M.
Dowran
,
R.
Davidson
,
B. J.
Lawrie
, and
A. M.
Marino
,
Optica
3
,
985
(
2016
).
8.
O.
Danaci
,
C.
Rios
, and
R. T.
Glasser
,
New J. Phys.
18
,
073032
(
2016
).
9.
R. L.
Farrow
and
D. J.
Rakestraw
,
Science
257
,
1894
(
1992
).
10.
Y.
Prior
,
Appl. Opt.
19
,
1741
(
1980
).
11.
Z. W.
Sun
,
Z. S.
Li
,
B.
Li
,
M.
Aldén
, and
P.
Ewart
,
Appl. Phys. B
98
,
593
(
2010
).
12.
M.
Motzkus
,
S.
Pedersen
, and
A. H.
Zewail
,
J. Phys. Chem.
100
,
5620
(
1996
).
13.
H. D.
Wizemann
,
Spectrochim. Acta
54
,
1267
(
1999
).
14.
M.
Schmitt
,
G.
Knopp
,
A.
Materny
, and
W.
Kiefer
,
Chem. Phys. Lett.
280
,
339
(
1997
).
15.
M.
Dantus
,
Annu. Rev. Phys. Chem.
52
,
639
(
2001
).
16.
X.
Cheng
,
Z.
Ren
,
J.
Wang
,
Y.
Miao
,
X.
Xu
,
L.
Jia
,
H.
Fan
, and
J.
Bai
,
Spectrochim. Acta, Part B
70
,
39
(
2012
).
17.
X.
Yin
,
X.
Cheng
,
K.
Fei
,
J.
Bai
, and
Z.
Ren
,
IEEE J. Sel. Top. Quantum Electron.
21
,
323
(
2014
).
18.
E.
Snitzer
,
J. Opt. Soc. Am.
51
,
491
(
1961
).
19.
Q.
Zhan
,
Opt. Express
12
,
3377
(
2004
).
20.
G.
Gibson
,
J.
Courtial
,
M. J.
Padgett
,
M.
Vasnetsov
, and
S.
Franke-Arnold
,
Opt. Express
12
,
5448
(
2004
).
21.
A. E.
Willner
,
H.
Huang
,
Y.
Yan
,
Y.
Ren
,
N.
Ahmed
,
G.
Xie
,
C.
Bao
,
L.
Li
,
Y.
Cao
, and
Z.
Zhao
,
Adv. Opt. Photonics
7
,
66
(
2015
).
22.
G.
Bautista
,
M. J.
Huttunen
,
J.
Mäkitalo
,
J. M.
Kontio
,
J.
Simonen
, and
M.
Kauranen
,
Nano Lett.
12
,
3207
(
2012
).
23.
B.
Fischer
,
J. O.
White
,
M.
Cronin-Golomb
, and
A.
Yariv
,
Opt. Lett.
11
,
239
(
1986
).
24.
M. M.
Coles
,
M. D.
Williams
, and
D. L.
Andrews
,
Opt. Express
21
,
12783
(
2013
).
25.
S.-K.
Liu
,
C.
Yang
,
S.-L.
Liu
,
Z.-Y.
Zhou
,
Y.
Li
,
Y.-H.
Li
,
Z.-H.
Xu
,
G.-C.
Guo
, and
B.-S.
Shi
,
Phys. Rev. Appl.
11
,
044013
(
2019
).
26.
S. M.
Li
,
S.-X.
Qian
,
L.-J.
Kong
,
Z.-C.
Ren
,
Y.
Li
,
C.
Tu
, and
H.-T.
Wang
,
Europhys. Lett.
105
,
64006
(
2014
).
You do not currently have access to this content.