The electric field effect on the optical properties of semiconductors is important in terms of both fundamental physics and technological applications. Here, we explored the optical behavior of cesium halide perovskites under a varied electric field (F). We revealed the intrinsically distinct photoluminescence (PL) spectral evolution between the quantum-confined perovskites and the bulk phase, indicating the different carrier recombination behaviors under F. Strong PL quenching along with significant broadening of emission linewidths was observed. Notably, the CsPbBr3 colloidal quantum dots and nanoplatelets exhibit an unusual field-induced bandgap increase, which is attributed to the weakened orbital coupling between the Pb 6s and Br 4p states with the increase in F. These results could advance their application potential in optoelectronics.

1.
A. W.
Achtstein
,
A. V.
Prudnikau
,
M. V.
Ermolenko
,
L. I.
Gurinovich
,
S. V.
Gaponenko
,
U.
Woggon
,
A. V.
Baranov
,
M. Y.
Leonov
,
I. D.
Rukhlenko
,
A. V.
Fedorov
, and
M. V.
Artemyev
,
ACS Nano
8
(
8
),
7678
7686
(
2014
).
2.
F.-Y.
Juang
,
J.
Singh
, and
P. K.
Bhattacharya
, “
Field-dependent linewidths and photoluminescence energies in GaAs-AlGaAs multiquantum well modulators
,”
Appl. Phys. Lett.
48
(
19
),
1246
(
1986
).
3.
C. E.
Rowland
,
K.
Susumu
,
M. H.
Stewart
,
E.
Oh
,
A. J.
Mäkinen
,
T. J.
O'Shaughnessy
,
G.
Kushto
,
M. A.
Wolak
,
J. S.
Erickson
,
A. L.
Efros
,
A. L.
Huston
, and
J. B.
Delehanty
, “
Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage-sensitive cellular imaging probes
,”
Nano Lett.
15
(
10
),
6848
6854
(
2015
).
4.
V. L.
Colvin
,
K. L.
Cunningham
, and
A. P.
Alivisatos
, “
Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state
,”
J. Chem. Phys.
101
(
8
),
7122
7138
(
1994
).
5.
E. E.
Mendez
,
F.
Agulló-Rueda
, and
J. M.
Hong
, “
Stark localization in GaAs-GaAlAs superlattices under an electric field
,”
Phys. Rev. Lett.
60
(
23
),
2426
(
1988
).
6.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
, “
Band-edge electroabsorption in quantum well structures—The quantum-confined Stark effect
,”
Phys. Rev. Lett.
53
(
22
),
2173
2176
(
1984
).
7.
N. V.
Tepliakov
,
I. O.
Ponomareva
,
M. Y.
Leonov
,
A. V.
Baranov
,
A. V.
Fedorov
, and
I. D.
Rukhlenko
, “
Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets
,”
J. Phys. Chem. C
120
(
4
),
2379
2385
(
2016
).
8.
H. N.
Spector
and
J.
Lee
, “
Stark effect in the optical absorption in cubical quantum boxes
,”
Physica B
393
(
1
),
94
99
(
2007
).
9.
P.
Jin
,
C. M.
Li
,
Z. Y.
Zhang
,
F. Q.
Liu
,
Y. H.
Chen
,
X. L.
Ye
,
B.
Xu
, and
Z. G.
Wang
, “
Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs∕ GaAs quantum dots
,”
Appl. Phys. Lett.
85
(
14
),
2791
2793
(
2004
).
10.
S.
Ramanathan
,
G.
Petersen
,
K.
Wijesundara
,
R.
Thota
,
E. A.
Stinaff
,
M. L.
Kerfoot
,
M.
Scheibner
,
A. S.
Bracker
, and
D.
Gammon
, “
Quantum-confined Stark effects in coupled InAs/GaAs quantum dots
,”
Appl. Phys. Lett.
102
(
21
),
213101
(
2013
).
11.
I. E.
Itskevich
, “
Stark shift in electroluminescence of individual InAs quantum dots
,”
Appl. Phys. Lett.
76
(
26
),
3932
3934
(
2000
).
12.
D.
Vella
,
D.
Ovchinnikov
,
D.
Viola
,
D.
Dumcenco
,
Y. C.
Kung
,
E. A. A.
Pogna
,
S. D.
Conte
,
V.
Vega-Mayoral
,
T.
Borzda
,
M.
Prijatelj
,
D.
Mihailovic
,
A.
Kis
,
G.
Cerullo
, and
C.
Gadermaier
, “
Field-induced charge separation dynamics in monolayer MoS2
,”
2D Mater.
4
(
3
),
035017
(
2017
).
13.
G.
Walters
,
M.
Wei
,
O.
Voznyy
,
R.
Quintero-Bermudez
,
A.
Kiani
,
D. M.
Smilgies
,
R.
Munir
,
A.
Amassian
,
S.
Hoogland
, and
E.
Sargent
, “
The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles
,”
Nat. Commun.
9
(
1
),
4214
(
2018
).
14.
D. A. B.
Miller
,
D. S.
Chemla
, and
S.
Schmitt‐Rink
, “
Electroabsorption of highly confined systems: Theory of the quantum–confined Franz–Keldysh effect in semiconductor quantum wires and dots
,”
Appl. Phys. Lett.
52
(
25
),
2154
2156
(
1988
).
15.
Y.
Wang
,
X. M.
Li
,
V.
Nalla
,
H. B.
Zeng
, and
H. D.
Sun
, “
Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals
,”
Adv. Funct. Mater.
27
(
13
),
1605088
(
2017
).
16.
X. M.
Li
,
Y.
Wu
,
S. L.
Zhang
,
B.
Cai
,
Y.
Gu
,
J. Z.
Song
, and
H. B.
Zeng
, “
CsPbX3 quantum dots for lighting and displays: Room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes
,”
Adv. Funct. Mater.
26
(
15
),
2435
2445
(
2016
).
17.
T. Y.
Zhang
and
W.
Zhao
, “
Franz-Keldysh effect and dynamical Franz-Keldysh effect of cylindrical quantum wires
,”
Phys. Rev. B
73
(
24
),
245337
(
2006
).
18.
A. G.
Vitukhnovsky
,
A. S.
Selyukov
,
V. R.
Solovey
,
R. B.
Vasiliev
, and
E. P.
Lazarevad
, “
Photoluminescence of CdTe colloidal quantum wells in external electric field
,”
J. Lumin.
186
,
194
198
(
2017
).
19.
B.
Ullrich
,
J. S.
Wang
, and
G. J.
Brown
, “
Photoluminescence under high-electric field of PbS quantum dots
,”
AIP Adv.
2
(
4
),
042132
(
2012
).
20.
C. X.
Huo
,
X. H.
Liu
,
X. F.
Song
,
Z. M.
Wang
, and
H. B.
Zeng
, “
Field effect transistors based on Van-Der-Waals grown and dry transferred, all-inorganic perovskites ultrathin platelets
,”
J. Phys. Chem. Lett.
8
,
4785
4792
(
2017
).
21.
Y.
Wang
,
Z. Y.
Gu
,
Y. J.
Ren
,
Z. M.
Wang
,
B. Q.
Yao
,
Z. L.
Dong
,
G.
Adamo
,
H. B.
Zeng
, and
H. D.
Sun
, “
Perovskite-ion beam interactions: Toward controllable light-emission and lasing
,”
ACS Appl. Mater. Interfaces
11
(
17
),
15756
15763
(
2019
).
22.
D. H.
Li
,
J.
Zhang
,
Q.
Zhang
, and
Q. H.
Xiong
, “
Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz–Keldysh, and Stark effects
,”
Nano Lett.
12
(
6
),
2993
2999
(
2012
).
23.
Y.
Wang
,
V. D.
Ta
,
K. S.
Leck
,
B. H. I.
Tan
,
Z.
Wang
,
T. C.
He
,
C.-D.
Ohl
,
H. V.
Demir
, and
H. D.
Sun
, “
Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots
,”
Nano Lett.
17
(
4
),
2640
2646
(
2017
).
24.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
, “
Electric field dependence of optical absorption near the band gap of quantum-well structures
,”
Phys. Rev. B
32
(
2
),
1043
(
1985
).
25.
A. W.
Achtstein
,
A.
Schliwa
,
A.
Prudnikau
,
M.
Hardzei
,
M. V.
Artemyev
,
C.
Thomsen
, and
U.
Woggon
, “
Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets
,”
Nano Lett.
12
(
6
),
3151
3157
(
2012
).
26.
M.
Pelton
,
S.
Ithurria
,
R. D.
Schaller
,
D. S.
Dolzhnikov
, and
D. V.
Talapin
, “
Carrier cooling in colloidal quantum wells
,”
Nano Lett.
12
(
12
),
6158
6163
(
2012
).
27.
J.
Seufert
,
M.
Obert
,
M.
Scheibner
,
N. A.
Gippius
,
G.
Bacher
,
A.
Forchel
,
T.
Passow
,
K.
Leonardi
, and
D.
Hommel
, “
Stark effect and polarizability in a single CdSe/ZnSe quantum dot
,”
Appl. Phys. Lett.
79
(
7
),
1033
1035
(
2001
).
28.
S. A.
Empedocles
and
M. G.
Bawendi
, “
Quantum-confined stark effect in single CdSe nanocrystallite quantum dots
,”
Science
278
(
5346
),
2114
2117
(
1997
).
29.
Y.
Wang
,
X. M.
Li
,
J. Z.
Song
,
L.
Xiao
,
H. B.
Zeng
, and
H. D.
Sun
, “
All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics
,”
Adv. Mater.
47
(
5
),
7101
7108
(
2016
).
30.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
31.
K.
Miyata
,
T. L.
Atallah
, and
X.-Y.
Zhu
, “
Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation
,”
Sci. Adv.
3
(
10
),
e1701469
(
2017
).
32.
Y.
Jiang
,
X.
Wang
, and
A.
Pan
, “
Properties of excitons and photogenerated charge carriers in metal halide perovskites
,”
Adv. Mater.
(published online).
33.
R. L.
Petritz
and
W. W.
Scanlon
, “
Mobility of electrons and holes in the polar crystal, PbS
,”
Phys. Rev.
97
(
6
),
1620
(
1955
).
34.
P. D.
Southgate
,
D. S.
Hall
, and
A. B.
Dreeben
, “
Hot-electron distribution in n-gaas derived from photoluminescence measurements with applied electric field
,”
J. Appl. Phys.
42
(
7
),
2868
2874
(
1971
).
35.
V. K.
Ravi
,
G. B.
Markad
, and
A.
Nag
, “
Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals
,”
ACS Energy Lett.
1
(
4
),
665
671
(
2016
).
36.
G. J.
Xiao
,
Y.
Cao
,
G. Y.
Qi
,
L. R.
Wang
,
C.
Liu
,
Z. W.
Ma
,
X. Y.
Yang
,
Y. M.
Sui
,
W. T.
Zheng
, and
B.
Zou
, “
Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals
,”
J. Am. Chem. Soc.
139
(
29
),
10087
10094
(
2017
).
37.
A. O.
Muravitskaya
,
L. I.
Gurinovich
,
A. V.
Prudnikau
,
M. V.
Artemyev
, and
S. V.
Gaponenko
, “
The effect of an external electric field on photoluminescence of CdSe colloidal nanoparticles of different topologies
,”
Opt. Spectrosc.
122
(
1
),
83
87
(
2017
).
38.
G. A.
Baraff
, “
Distribution functions and ionization rates for hot electrons in semiconductors
,”
Phys. Rev.
128
(
6
),
2507
2517
(
1962
).
39.
L.
Schultheis
,
K.
Köhler
, and
C. W.
Tu
, “
Energy shift and line broadening of three-dimensional excitons in electric fields
,”
Phys. Rev. B
36
,
6609
6612
(
1987
).
40.
A.
Phillips
and
P. J.
Price
, “
Monte Carlo calculations on hot electron energy tails
,”
Appl. Phys. Lett.
30
(
10
),
528
(
1977
).

Supplementary Material

You do not currently have access to this content.