We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a commercial fiber-coupled system that is frequently employed in table-top THz time-domain systems.

1.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
(
4
),
1213
(
2015
).
2.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
, “
Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
,”
Appl. Phys. Lett.
88
(
18
),
182509
(
2006
).
3.
S. O.
Valenzuela
and
M.
Tinkham
, “
Direct electronic measurement of the spin Hall effect
,”
Nature
442
(
7099
),
176
(
2006
).
4.
T.
Kampfrath
,
M.
Battiato
,
P.
Maldonado
,
G.
Eilers
,
J.
Nötzold
,
S.
Mährlein
,
V.
Zbarsky
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
 et al, “
Terahertz spin current pulses controlled by magnetic heterostructures
,”
Nat. Nanotechnol.
8
(
4
),
256
(
2013
).
5.
T.
Seifert
,
S.
Jaiswal
,
U.
Martens
,
J.
Hannegan
,
L.
Braun
,
P.
Maldonado
,
F.
Freimuth
,
A.
Kronenberg
,
J.
Henrizi
,
I.
Radu
 et al, “
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
,”
Nat. Photonics
10
(
7
),
483
488
(
2016
).
6.
D.
Yang
,
M.
Elyasi
,
X.
Qui
,
M.
Chen
,
Y.
Liu
,
L.
Ke
, and
H.
Yang
, “
Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure
,”
Adv. Opt. Mater.
4
(
12
),
1944
(
2016
).
7.
G.
Torosyan
,
S.
Keller
,
L.
Scheuer
,
R.
Beigang
, and
E. Th.
Papaioannou
, “
Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures
,”
Sci. Rep.
8
(
1
),
1311
(
2018
).
8.
T. J.
Huisman
,
R. V.
Mikhaylovskiy
,
J. D.
Costa
,
F.
Freimuth
,
E.
Paz
,
J.
Ventura
,
P. P.
Freitas
,
S.
Blügel
,
Y.
Mokrousov
,
T.
Rasing
 et al, “
Femtosecond control of electric currents in metallic ferromagnetic heterostructures
,”
Nat. Nanotechnol.
11
(
5
),
455
(
2016
).
9.
T.
Seifert
,
S.
Jaiswal
,
M.
Sajadi
,
G.
Jakob
,
S.
Winnerl
,
M.
Wolf
,
M.
Kläui
, and
T.
Kampfrath
, “
Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter
,”
Appl. Phys. Lett.
110
(
25
),
252402
(
2017
).
10.
M.
Battiato
,
K.
Carva
, and
P. M.
Oppeneer
, “
Superdiffusive spin transport as a mechanism of ultrafast demagnetization
,”
Phys. Rev. Lett.
105
(
2
),
027203
(
2010
).
11.
E. T.
Papaioannou
,
G.
Torosyan
,
S.
Keller
,
L.
Scheuer
,
M.
Battiato
,
V. K.
Mag-usara
,
J.
L'huillier
,
M.
Tani
, and
R.
Beigang
, “
Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths
,”
IEEE Trans. Magn.
54
,
1
5
(
2018
).
12.
R. I.
Herapath
,
S. M.
Hornett
,
T. S.
Seifert
,
G.
Jakob
,
M.
Kläui
,
J.
Bertolotti
,
T.
Kampfrath
, and
E.
Hendry
, “
Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer
,”
Appl. Phys. Lett.
114
(
4
),
041107
(
2019
).
13.
R. L.
Milot
,
M. T.
Klug
,
C. L.
Davies
,
Z.
Wang
,
H.
Kraus
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
, “
The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films
,”
Adv. Mater.
30
(
44
),
1804506
(
2018
).
14.
T.
Seifert
,
U.
Martens
,
S.
Günther
,
M. H.
Aguirre
,
P. A.
Algarabel
,
A.
Anadón
,
H. S.
Körner
,
J.
Walowski
,
C.
Back
,
M. R.
Ibarra
 et al, “
Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds
,”
SPIN
7
(
03
),
1740010
(
2017
).
15.
T.
Seifert
,
N. M.
Tran
,
O.
Gueckstock
,
S. M.
Rouzegar
,
L.
Nadvornik
,
S.
Jaiswal
,
G.
Jakob
,
V. V.
Temnov
,
M.
Münzenberg
,
M.
Wolf
 et al, “
Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20
,”
J. Phys. D
51
(
36
),
364003
(
2018
).
16.
Y.
Sasaki
,
K. Z.
Suzuk
, and
S.
Mizukami
, “
Annealing effect on laser pulse-induced THz wave emission in Ta/CoFeB/MgO films
,”
Appl. Phys. Lett.
111
(
10
),
102401
(
2017
).
17.
Z.
Feng
,
R.
Yu
,
Y.
Zhou
,
H.
Lu
,
W.
Tan
,
H.
Deng
,
Q.
Lui
,
Z.
Zhai
,
L.
Zhu
,
J.
Cai
 et al, “
Highly efficient spintronic terahertz emitter enabled by metal-dielectric photonic crystal
,”
Adv. Opt. Mater.
6
,
1800965
(
2018
).
18.
S.
Preu
, “
A unified derivation of the terahertz spectra generated by photoconductors and diodes
,”
J. Infrared, Millimeter, Terahertz Waves
35
(
12
),
998
1010
(
2014
).
19.
R. B.
Kohlhaas
,
R. J. B.
Dietz
,
S.
Breuer
,
S.
Nellen
,
L.
Liebermeister
,
M.
Schell
, and
B.
Globisch
, “
Improving the dynamic range of InGaAs-based THz detectors by localized beryllium doping: Up to 70 dB at 3 THz
,”
Opt. Lett.
43
(
21
),
5423–5454
(
2018
).
20.
U.
Nandi
,
J. C.
Norman
,
A. C.
Gossard
,
H.
Lu
, and
S.
Preu
, “
1550-nm driven ErAs: In (Al) GaAs photoconductor-based terahertz time domain system with 6.5 THz bandwidth
,”
J. Infrared, Millimeter, Terahertz Waves
39
(
4
),
340
348
(
2018
).
21.
N. T.
Yardimci
,
S. H.
Yang
,
C. W.
Berry
, and
M.
Jarrahi
, “
High-power terahertz generation using large-area plasmonic photoconductive emitters
,”
IEEE Trans. Terahertz Sci. Technol.
5
(
2
),
223
229
(
2015
).
22.
S.
Preu
,
G. H.
Döhler
,
S.
Malzer
,
L. J.
Wang
, and
A. C.
Gossard
, “
Tunable, continuous-wave terahertz photomixer sources and applications
,”
J. Appl. Phys.
109
(
6
),
061301
(
2011
).

Supplementary Material

You do not currently have access to this content.