The emergence of advanced 3D printing techniques and the recent interest in architected materials have sparked a surge of interest in mechanical metamaterials whose unusual properties are defined by their highly ordered microarchitectures. Mechanical metamaterials with disordered microarchitectures have, however, not received as much attention despite their inherent advantages, such as robustness against the precise arrangement and design parameters of individual unit cells. Here, we computationally studied the elastic properties of two general types of disordered networks, namely, lattice-restricted and unrestricted networks that were made of beamlike elements and possessed mean connectivity values, Z, ranging between 2.5 and 7. We also additively manufactured a number of representative networks using selective laser sintering and showed that their deformations are consistent with our computational predictions. Unrestricted networks exhibited several advantages over the lattice-restricted ones including a broader range of achievable elastic modulus-Poisson's ratio duos as well as a higher probability of exhibiting auxetic and double-auxetic (i.e., auxetic behavior in both orthogonal directions) behaviors. Most interestingly, we could find unrestricted auxetic networks for high connectivity levels of up to 4.5, while no lattice-restricted auxetic networks were found for any connectivity level beyond 3.5. Given the fact that, according to Maxwell's criterion, 3.5 is the highest Z for which both of our lattice-restricted and unrestricted networks are bending-dominated, we concluded that unrestricted networks exhibit auxetic behavior well into their stretch-dominated domain. This is a promising observation that underlines the potential of unrestricted networks for the challenging task of designing stiff auxetic metamaterials in the stretch-dominated domain (i.e., Z = 4–4.5).

1.
J. U.
Surjadi
,
L.
Gao
,
H.
Du
,
X.
Li
,
X.
Xiong
,
N. X.
Fang
, and
Y.
Lu
,
Adv. Eng. Mater.
21
,
1800864
(
2019
).
2.
X.
Yu
,
J.
Zhou
,
H.
Liang
,
Z.
Jiang
, and
L.
Wu
,
Prog. Mater. Sci.
94
,
114
173
(
2018
).
3.
A. A.
Zadpoor
,
Mater. Horiz.
3
(
5
),
371
381
(
2016
).
4.
A.
Alderson
and
K.
Alderson
,
Proc. Inst. Mech. Eng., Part G
221
(
4
),
565
575
(
2007
).
5.
O.
Duncan
,
T.
Shepherd
,
C.
Moroney
,
L.
Foster
,
P.
Venkatraman
,
K.
Winwood
,
T.
Allen
, and
A.
Alderson
,
Appl. Sci.
8
(
6
),
941
(
2018
).
6.
M.
Mirzaali
,
A.
Caracciolo
,
H.
Pahlavani
,
S.
Janbaz
,
L.
Vergani
, and
A.
Zadpoor
,
Appl. Phys. Lett.
113
(
24
),
241903
(
2018
).
7.
D.
Rayneau-Kirkhope
,
C.
Zhang
,
L.
Theran
, and
M. A.
Dias
,
Proc. R. Soc. A
474
(
2210
),
20170753
(
2018
).
8.
X.
Ren
,
R.
Das
,
P.
Tran
,
T. D.
Ngo
, and
Y. M.
Xie
,
Smart Mater. Struct.
27
(
2
),
023001
(
2018
).
9.
M.
Mirzaali
,
S.
Janbaz
,
M.
Strano
,
L.
Vergani
, and
A.
Zadpoor
,
Sci. Rep.
8
(
1
),
965
(
2018
).
10.
R. M.
Neville
,
F.
Scarpa
, and
A.
Pirrera
,
Sci. Rep.
6
,
31067
(
2016
).
11.
K.
Dudek
,
R.
Gatt
,
M.
Dudek
, and
J.
Grima
,
Proc. Roy. Soc. A
474
(
2215
),
20180003
(
2018
).
12.
R. S.
Lakes
,
T.
Lee
,
A.
Bersie
, and
Y.
Wang
,
Nature
410
(
6828
),
565
(
2001
).
13.
Z. G.
Nicolaou
and
A. E.
Motter
,
Nat. Mater.
11
(
7
),
608
613
(
2012
).
14.
B.
Moore
,
T.
Jaglinski
,
D. D.
Stone
, and
R. S.
Lakes
,
Philosophical Mag. Lett.
86
(
10
),
651
659
(
2006
).
15.
R.
Hedayati
,
A.
Leeflang
, and
A.
Zadpoor
,
Appl. Phys. Lett.
110
(
9
),
091905
(
2017
).
16.
T.
van Manen
,
S.
Janbaz
, and
A. A.
Zadpoor
,
Mater. Horiz.
4
(
6
),
1064
1069
(
2017
).
17.
M.
Mirzaali
,
M.
Habibi
,
S.
Janbaz
,
L.
Vergani
, and
A.
Zadpoor
,
Sci. Rep.
7
(
1
),
13028
(
2017
).
18.
C.
Lv
,
D.
Krishnaraju
,
G.
Konjevod
,
H.
Yu
, and
H.
Jiang
,
Sci. Rep.
4
,
5979
(
2014
).
19.
J. L.
Silverberg
,
A. A.
Evans
,
L.
McLeod
,
R. C.
Hayward
,
T.
Hull
,
C. D.
Santangelo
, and
I.
Cohen
,
Science
345
(
6197
),
647
650
(
2014
).
20.
C.
Coulais
,
C.
Kettenis
, and
M.
van Hecke
,
Nat. Phys.
14
(
1
),
40
(
2018
).
21.
J.
Berger
,
H.
Wadley
, and
R.
McMeeking
,
Nature
543
(
7646
),
533
(
2017
).
22.
R.
Hedayati
,
M.
Mirzaali
,
L.
Vergani
, and
A.
Zadpoor
,
APL Mater.
6
(
3
),
036101
(
2018
).
23.
H.
Mitschke
,
J.
Schwerdtfeger
,
F.
Schury
,
M.
Stingl
,
C.
Körner
,
R. F.
Singer
,
V.
Robins
,
K.
Mecke
, and
G. E.
Schröder-Turk
,
Adv. Mater.
23
(
22-23
),
2669
2674
(
2011
).
24.
G. A.
Buxton
and
N.
Clarke
,
Phys. Rev. Lett.
98
(
23
),
238103
(
2007
).
25.
V.
Deshpande
,
M.
Ashby
, and
N.
Fleck
,
Acta Mater.
49
(
6
),
1035
1040
(
2001
).
26.
K.
Bertoldi
,
V.
Vitelli
,
J.
Christensen
, and
M.
van Hecke
,
Nat. Rev. Mater.
2
(
11
),
17066
(
2017
).
27.
J.
Bauer
,
A.
Schroer
,
R.
Schwaiger
, and
O.
Kraft
,
Nat. Mater.
15
(
4
),
438
(
2016
).
28.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
(
Cambridge University Press
,
1999
).
29.
L. J.
Gibson
,
M. F.
Ashby
, and
B. A.
Harley
,
Cellular Materials in Nature and Medicine
(
Cambridge University Express
,
2010
).
30.
D.
Head
,
A.
Levine
, and
F.
MacKintosh
,
Phys. Rev. E
68
(
6
),
061907
(
2003
).
31.
J.
Wilhelm
and
E.
Frey
,
Phys. Rev. Lett.
91
(
10
),
108103
(
2003
).
33.
D. A.
Head
,
A. J.
Levine
, and
F.
MacKintosh
,
Phys. Rev. Lett.
91
(
10
),
108102
(
2003
).
34.
P.
Fratzl
, “
Collagen: Structure and mechanics, an introduction
,” in
Collagen
(
Springer
,
2008
), pp.
1
13
.
35.
A. J.
Licup
,
S.
Münster
,
A.
Sharma
,
M.
Sheinman
,
L. M.
Jawerth
,
B.
Fabry
,
D. A.
Weitz
, and
F. C.
MacKintosh
,
Proc. Natl. Acad. Sci.
112
(
31
),
9573
9578
(
2015
).
36.
M.
Hanifpour
,
C. F.
Petersen
,
M. J.
Alava
, and
S.
Zapperi
,
Eur. Phys. J. B
91
(
11
),
271
(
2018
).
37.
V. F.
Hagh
and
M.
Thorpe
,
Phys. Rev. B
98
(
10
),
100101
(
2018
).
38.
M.
Mirzaali
,
R.
Hedayati
,
P.
Vena
,
L.
Vergani
,
M.
Strano
, and
A.
Zadpoor
,
Appl. Phys. Lett.
111
(
5
),
051903
(
2017
).
39.
D.
Rayneau-Kirkhope
,
S.
Bonfanti
, and
S.
Zapperi
,
Appl. Phys. Lett.
114
(
11
),
111902
(
2019
).
40.
D. R.
Reid
,
N.
Pashine
,
J. M.
Wozniak
,
H. M.
Jaeger
,
A. J.
Liu
,
S. R.
Nagel
, and
J. J.
de Pablo
,
Proc. Natl. Acad. Sci.
115
(
7
),
E1384
(
2018
).
41.
E.
Berthier
,
J. E.
Kollmer
,
S. E.
Henkes
,
K.
Liu
,
J. M.
Schwarz
, and
K. E.
Daniels
, “
Rigidity percolation control of the brittle-ductile transition in disordered networks
,” preprint arXiv:1812.07466 (
2018
).
42.
M. F.
Vermeulen
,
A.
Bose
,
C.
Storm
, and
W. G.
Ellenbroek
,
Phys. Rev. E
96
(
5
),
053003
(
2017
).
43.
J. B.
Carleton
,
A.
D'Amore
,
K. R.
Feaver
,
G. J.
Rodin
, and
M. S.
Sacks
,
Acta Biomater.
12
,
93
101
(
2015
).
44.
V.
Karageorgiou
and
D.
Kaplan
,
Biomaterials
26
(
27
),
5474
5491
(
2005
).
45.
M. F.
Ashby
,
Philos. Mag.
85
(
26–27
),
3235
3257
(
2005
).
46.
Z.
Hashin
,
J. Appl. Mech.
29
(
1
),
143
150
(
1962
).
47.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
11
(
2
),
127
140
(
1963
).
48.
I.
Ostanin
,
G.
Ovchinnikov
,
D. C.
Tozoni
, and
D.
Zorin
,
J. Mech. Phys. Solids
118
,
204
217
(
2018
).
49.
A.
Ion
,
J.
Frohnhofen
,
L.
Wall
,
R.
Kovacs
,
M.
Alistar
,
J.
Lindsay
,
P.
Lopes
,
H.-T.
Chen
, and
P.
Baudisch
, “
Metamaterial mechanisms
,” in
Proceedings of the 29th Annual Symposium on User Interface Software and Technology (
2016
), pp.
529
539
.
50.
J.
Lee
,
K.
Kim
,
J.
Ju
, and
D.-M.
Kim
,
J. Eng. Mater. Technol.
137
(
1
),
011001
(
2014
).
51.
L. R.
Meza
,
A. J.
Zelhofer
,
N.
Clarke
,
A. J.
Mateos
,
D. M.
Kochmann
, and
J. R.
Greer
,
Proc. Natl. Acad. Sci.
112
(
37
),
11502
11507
(
2015
).

Supplementary Material

You do not currently have access to this content.