Chip-scale frequency combs such as those based on quantum cascade lasers (QCLs) or microresonators are attracting tremendous attention because of their potential to solve key challenges in sensing and metrology. Though nonlinearity and proper dispersion engineering can create a comb—light whose lines are perfectly evenly spaced—these devices can enter into different states depending on their history, a critical problem that can necessitate slow and manual intervention. Moreover, their large repetition rates are problematic for applications such as dual comb molecular spectroscopy, requiring gapless tuning of the offset. Here, we show that by blending midinfrared QCL combs with microelectromechanical comb drives, one can directly manipulate the dynamics of the comb and identify new physical effects. Not only do the resulting devices remain on a chip-scale and are able to stably tune over large frequency ranges, but they can also switch between different comb states at extremely high speeds. We use these devices to probe hysteresis in comb formation and develop a protocol for achieving a particular comb state regardless of its initial state.

1.
P.
Trocha
,
M.
Karpov
,
D.
Ganin
,
M. H. P.
Pfeiffer
,
A.
Kordts
,
S.
Wolf
,
J.
Krockenberger
,
P.
Marin-Palomo
,
C.
Weimann
,
S.
Randel
,
W.
Freude
,
T. J.
Kippenberg
, and
C.
Koos
,
Science
359
,
887
(
2018
).
2.
A.
Hugi
,
G.
Villares
,
S.
Blaser
,
H. C.
Liu
, and
J.
Faist
,
Nature
492
,
229
(
2012
).
3.
D.
Burghoff
,
T.-Y.
Kao
,
N.
Han
,
C. W. I.
Chan
,
X.
Cai
,
Y.
Yang
,
D. J.
Hayton
,
J.-R.
Gao
,
J. L.
Reno
, and
Q.
Hu
,
Nat. Photonics
8
,
462
(
2014
).
4.
M.
Rösch
,
G.
Scalari
,
M.
Beck
, and
J.
Faist
,
Nat. Photonics
9
,
42
(
2015
).
5.
A. R.
Wilmsmeyer
,
W. O.
Gordon
,
E. D.
Davis
,
D.
Troya
,
B. A.
Mantooth
,
T. A.
Lalain
, and
J. R.
Morris
,
J. Phys. Chem. C
117
,
15685
(
2013
).
6.
J.
Westberg
,
L. A.
Sterczewski
,
F.
Kapsalidis
,
Y.
Bidaux
,
J.
Wolf
,
M.
Beck
,
J.
Faist
, and
G.
Wysocki
, in
Conference on Lasers and Electro-Optics
(
OSA
,
Washington, D.C
.,
2018
), p.
STh1L.5
.
7.
L. A.
Sterczewski
,
J.
Westberg
,
Y.
Yang
,
D.
Burghoff
,
J.
Reno
,
Q.
Hu
, and
G.
Wysocki
,
Optica
6
,
766
(
2019
).
8.
G.
Villares
,
S.
Riedi
,
J.
Wolf
,
D.
Kazakov
,
M. J.
Süess
,
P.
Jouy
,
M.
Beck
, and
J.
Faist
,
Optica
3
,
252
(
2016
).
9.
Y.
Bidaux
,
I.
Sergachev
,
W.
Wuester
,
R.
Maulini
,
T.
Gresch
,
A.
Bismuto
,
S.
Blaser
,
A.
Muller
, and
J.
Faist
,
Opt. Lett.
42
,
1604
(
2017
).
10.
D.
Burghoff
,
Y.
Yang
,
J. L.
Reno
, and
Q.
Hu
,
Optica
3
,
1362
(
2016
).
11.
Y.
Yang
,
D.
Burghoff
,
J.
Reno
, and
Q.
Hu
,
Opt. Lett.
42
,
3888
(
2017
).
12.
J. B.
Khurgin
,
Y.
Dikmelik
,
A.
Hugi
, and
J.
Faist
,
Appl. Phys. Lett.
104
,
081118
(
2014
).
13.
M.
Singleton
,
P.
Jouy
,
M.
Beck
, and
J.
Faist
,
Optica
5
,
948
(
2018
).
14.
D.
Burghoff
,
Y.
Yang
,
D. J.
Hayton
,
J.-R.
Gao
,
J. L.
Reno
, and
Q.
Hu
,
Opt. Express
23
,
1190
(
2015
).
15.
N.
Henry
,
D.
Burghoff
,
Y.
Yang
,
Q.
Hu
, and
J. B.
Khurgin
,
Opt. Eng.
57
,
011009
(
2017
).
16.
N.
Henry
,
D.
Burghoff
,
Q.
Hu
, and
J. B.
Khurgin
,
Opt. Express
26
,
14201
(
2018
).
17.
J.
Hillbrand
,
P.
Jouy
,
M.
Beck
, and
J.
Faist
,
Opt. Lett.
43
,
1746
(
2018
).
18.
F.
Kapsalidis
,
M.
Shahmohammadi
,
M. J.
Süess
,
J. M.
Wolf
,
E.
Gini
,
M.
Beck
,
M.
Hundt
,
B.
Tuzson
,
L.
Emmenegger
, and
J.
Faist
,
Appl. Phys. B
124
,
107
(
2018
).
19.
N.
Han
,
A.
de Geofroy
,
D. P.
Burghoff
,
C. W. I.
Chan
,
A. W. M.
Lee
,
J. L.
Reno
, and
Q.
Hu
,
Opt. Lett.
39
,
3480
(
2014
).
20.
D.
Burghoff
,
Y.
Yang
, and
Q.
Hu
,
Sci. Adv.
2
,
e1601227
(
2016
).
21.
L. A.
Sterczewski
,
J.
Westberg
, and
G.
Wysocki
, “Computational coherent averaging for free-running dual-comb spectroscopy,” preprint arXiv (
2018
).
22.
N. B.
Hébert
,
J.
Genest
,
J.-D.
Deschênes
,
H.
Bergeron
,
G. Y.
Chen
,
C.
Khurmi
, and
D. G.
Lancaster
,
Opt. Express
25
,
8168
(
2017
).
You do not currently have access to this content.