Planar nanostructures allow near-ideal extraction of emission from a quantum emitter embedded within, thereby realizing deterministic single-photon sources. Such a source can be transformed into M single-photon sources by implementing active temporal-to-spatial mode demultiplexing. We report on the realization of such a demultiplexed source based on a quantum dot embedded in a nanophotonic waveguide. Efficient outcoupling (>60%) from the waveguide into a single mode optical fiber is obtained with high-efficiency grating couplers. As a proof-of-concept, active demultiplexing into M =4 spatial channels is demonstrated by the use of electro-optic modulators with an end-to-end efficiency of >81% into single-mode fibers. Overall, we demonstrate four-photon coincidence rates of >1 Hz even under nonresonant excitation of the quantum dot. The main limitation of the current source is the residual population of other exciton transitions, which corresponds to a finite preparation efficiency of the desired transition. We quantitatively extract a preparation efficiency of 15% using the second-order correlation function measurements. The experiment highlights the applicability of planar nanostructures as efficient multiphoton sources through temporal-to-spatial demultiplexing and lays out a clear path way of how to scale up toward demonstrating quantum advantages with the quantum dot sources.

You do not currently have access to this content.