Organic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after removing the stress, and the device reaches its initial performance after around 24–48 h.

1.
S.
Steudel
,
K.
Myny
,
S.
Schols
,
P.
Vicca
,
S.
Smout
,
A.
Tripathi
,
B.
van der Putten
,
J.-L.
van der Steen
,
M.
van Neer
,
F.
Schütze
,
O. R.
Hild
,
E.
van Veenendaal
,
P.
van Lieshout
,
M.
van Mil
,
J.
Genoe
,
G.
Gelinck
, and
P.
Heremans
, “
Design and realization of a flexible QQVGA AMOLED display with organic TFTs
,”
Organic Electron.
13
,
1729
1735
(
2012
).
2.
K.
Zhao
,
J.
Deng
,
X.
Wu
,
X.
Cheng
,
J.
Wei
, and
S.
Yin
, “
Fabrication and characteristics of permeable-base organic transistors based on co-evaporated pentacene: Al base
,”
Org. Electron.
12
,
1003
1009
(
2011
).
3.
F.
Kaschura
,
A.
Fischer
,
D.
Kasemann
,
K.
Leo
, and
B.
Lüssem
, “
Controlling morphology: A vertical organic transistor with a self-structured permeable base using the bottom electrode as seed layer
,”
Appl. Phys. Lett.
107
,
033301
(
2015
).
4.
B.
Lüssem
,
A.
Günther
,
A.
Fischer
,
D.
Kasemann
, and
K.
Leo
, “
Vertical organic transistors
,”
J. Phys.: Condens. Matter
27
,
443003
(
2015
).
5.
K.
Agrawal
,
O.
Rana
,
N.
Singh
,
R.
Srivastava
, and
S. S.
Rajput
, “
Low voltage organic permeable base n-type transistor
,”
Appl. Phys. Lett.
109
,
163301
(
2016
).
6.
B.
Kheradmand-Boroujeni
,
M. P.
Klinger
,
A.
Fischer
,
H.
Kleemann
,
K.
Leo
, and
F.
Ellinger
, “
A pulse-biasing small-signal measurement technique enabling 40 MHz operation of vertical organic transistors
,”
Sci. Rep.
8
,
7643
(
2018
).
7.
W.
Chen
,
F.
So
, and
J.
Guo
, “
Intrinsic delay of permeable base transistor
,”
J. Appl. Phys.
116
,
044505
(
2014
).
8.
G.
Gu
and
S. R.
Forrest
, “
Design of flat-panel displays based on organic light-emitting devices
,”
IEEE J. Sel. Top. Quantum Electron.
4
,
83
99
(
1998
).
9.
A.
Al-Shadeedi
,
S.
Liu
,
V.
Kaphle
,
C.-M.
Keum
, and
B.
Lüssem
, “
Scaling of high-performance organic permeable base transistors
,”
Adv. Electron. Mater.
5
,
1800728
(
2019
).
10.
A.
Al-shadeedi
,
S.
Liu
,
R. K.
Radha Krishnan
,
C.-M.
Keum
,
V.
Kaphle
,
D. B.
Scott
, and
B.
Lüssem
, “
Modeling tunnel currents in organic permeable-base transistors
,”
Synth. Met.
252
,
82
90
(
2019
).
11.
H.
Sinno
,
S.
Fabiano
,
X.
Crispin
,
M.
Berggren
, and
I.
Engquist
, “
Bias stress effect in polyelectrolyte-gated organic field-effect transistors
,”
Appl. Phys. Lett.
102
,
113306
(
2013
).
12.
F.
Colléaux
,
J. M.
Ball
,
P. H.
Wöbkenberg
,
P. J.
Hotchkiss
,
S. R.
Marder
, and
T. D.
Anthopoulos
, “
Bias-stress effects in organic field-effect transistors based on self-assembled monolayer nanodielectrics
,”
Phys. Chem. Chem. Phys.
13
,
14387
14393
(
2011
).
13.
R. A.
Street
,
M. L.
Chabinyc
,
F.
Endicott
, and
B.
Ong
, “
Extended time bias stress effects in polymer transistors
,”
J. Appl. Phys.
100
,
114518
(
2006
).
14.
J. B.
Chang
and
V.
Subramanian
, “
Effect of active layer thickness on bias stress effect in pentacene thin-film transistors
,”
Appl. Phys. Lett.
88
,
233513
(
2006
).
15.
A.
Salleo
,
F.
Endicott
, and
R. A.
Street
, “
Reversible and irreversible trapping at room temperature in poly(thiophene) thin-film transistors
,”
Appl. Phys. Lett.
86
,
263505
(
2005
).
16.
R. A.
Street
,
A.
Salleo
, and
M. L.
Chabinyc
, “
Bipolaron mechanism for bias-stress effects in polymer transistors
,”
Phys. Rev. B
68
,
085316
(
2003
).
17.
G.
Paasch
, “
Transport and reactions in doped conjugated polymers: Electrochemical processes and organic devices
,”
J. Electroanal. Chem.
600
,
131
141
(
2007
).
18.
B.
Lüssem
,
M. L.
Tietze
,
A.
Fischer
,
P.
Pahner
,
H.
Kleemann
,
A.
Günther
,
D.
Kasemann
, and
K.
Leo
, “
Beyond conventional organic transistors: Novel approaches with improved performance and stability
,”
Proc. SPIE
9185
,
91850H
(
2014
).
19.
K.
Yutani
,
S. Y.
Fujimoto
,
K. I.
Nakayama
, and
M.
Yokoyama
, “
Role of oxidation layer of aluminum base electrode in metal-base organic transistors
,”
Mol. Cryst. Liq. Cryst.
462
,
51
57
(
2006
).
20.
F.
Kaschura
,
A.
Fischer
,
M. P.
Klinger
,
D. H.
Doan
,
T.
Koprucki
,
A.
Glitzky
,
D.
Kasemann
,
J.
Widmer
, and
K.
Leo
, “
Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode
,”
J. Appl. Phys.
120
,
094501
(
2016
).
21.
S.
Lee
,
B.
Koo
,
J.
Shin
,
E.
Lee
,
H.
Park
, and
H.
Kim
, “
Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance
,”
Appl. Phys. Lett.
88
,
162109
(
2006
).
22.
H.
Klauk
,
U.
Zschieschang
,
J.
Pflaum
, and
M.
Halik
, “
Ultralow-power organic complementary circuits
,”
Nature
445
,
745
(
2007
).

Supplementary Material

You do not currently have access to this content.