As an environmentally friendly thermoelectric material with its constituents being free of Pb/Te, tetrahedrite Cu12Sb4S13 absorbs much research interest. However, its low thermoelectric performance inhibits its applications. Here, we show that through dual substitution of Se for S and Zn for Cu in the compound, both the electrical conductivity and the thermopower are enhanced, leading to the elevation of the power factor as high as ∼33% (at 723 K). Analyses indicate that the substitution of Se for S gives rise to changes in stoichiometry of Cu12Sb4S13 through precipitation of impurity phase Cu3SbS4, which causes variations of S vacancies and hole concentrations, while Zn2+ substitution for Cu1+ introduces donors, both of which tune and optimize the carrier concentration. Besides, the lattice thermal conductivity of dual substituted samples is reduced by as low as ∼30% (at 723 K) due to intensified phonon scattering of the impurities (Se and Zn). As a result, a large figure of merit ZT = 0.9 (at 723 K) is achieved in Cu12−yZnySb4S12.8Se0.2 samples with y =0.025 and 0.05, which is ∼41% higher than that of pristine tetrahedrite Cu12Sb4S13, indicating that dual substitution is an effective approach to improving its thermoelectric performance.

1.
A. I.
Hochbaum
,
R. K.
Chen
,
R. D.
Delgado
,
W. J.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P. D.
Yang
,
Nature
451
,
163
(
2008
).
2.
C.
Zhou
,
Y. K.
Lee
,
J.
Cha
,
B.
Yoo
,
S. P.
Cho
,
T.
Hyeon
, and
I.
Chung
,
J. Am. Chem. Soc.
140
,
9282
(
2018
).
3.
L. D.
Zhao
,
S. H.
Lo
,
Y. S.
Zhang
,
H.
Sun
,
G. J.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
4.
Y. Z.
Pei
,
X. Y.
Shi
,
A.
LaLonde
,
H.
Wang
,
L. D.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
(
2011
).
5.
X.
Lu
and
D. T.
Morelli
,
MRS Commun.
3
,
129
(
2013
).
6.
L. D.
Zhao
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
7
,
251
(
2014
).
7.
Y.
Li
,
G.
Liu
,
X.
Qin
, and
F.
Shan
,
RSC Adv.
6
,
112050
(
2016
).
8.
J. F.
Li
,
W. S.
Liu
,
L. D.
Zhao
, and
M.
Zhou
,
NPG Asia Mater.
2
,
152
(
2010
).
9.
X.
Wang
,
Y.
Li
,
G.
Liu
, and
F.
Shan
,
Intermetallics
93
,
338
(
2018
).
10.
C.
Zhou
,
Y.
Yu
,
Y. K.
Lee
,
O.
Cojocaru-Miredin
,
B.
Yoo
,
S.-P.
Cho
,
J.
Im
,
M.
Wuttig
,
T.
Hyeon
, and
I.
Chung
,
J. Am. Chem. Soc.
140
,
15535
15545
(
2018
).
11.
Y.
Bouyrie
,
C.
Candolfi
,
S.
Pailhès
,
M. M.
Koza
,
B.
Malaman
,
A.
Dauscher
,
J.
Tobola
,
O.
Boisron
,
L.
Saviot
, and
B.
Lenoir
,
Phys. Chem. Chem. Phys.
17
,
19751
(
2015
).
12.
R.
Chetty
,
A.
Bali
,
M. H.
Naik
,
G.
Rogl
,
P.
Rogl
,
M.
Jain
,
S.
Suwas
, and
R. C.
Mallik
,
Acta Mater.
100
,
266
(
2015
).
13.
R.
Chetty
,
D. S. P.
Kumar
,
G.
Rogl
,
P.
Rogl
,
E.
Bauer
,
H.
Michor
,
S.
Suwas
,
S.
Puchegger
,
G.
Giester
, and
R. C.
Mallik
,
Phys. Chem. Chem. Phys.
17
,
1716
(
2015
).
14.
J.
Heo
,
R.
Ravichandran
,
C. F.
Reidy
,
J.
Tate
,
J. F.
Wager
, and
D. A.
Keszler
,
Adv. Energy Mater.
5
,
1401506
(
2015
).
15.
X.
Lu
and
D. T.
Morelli
,
Phys. Chem. Chem. Phys.
15
,
5762
(
2013
).
16.
X.
Lu
,
D. T.
Morelli
,
Y.
Xia
, and
V.
Ozolins
,
Chem. Mater.
27
,
408
(
2015
).
17.
K.
Suekuni
,
K.
Tsuruta
,
M.
Kunii
,
H.
Nishiate
,
E.
Nishibori
,
S.
Maki
,
M.
Ohta
,
A.
Yamamoto
, and
M.
Koyano
,
J. Appl. Phys.
113
,
043712
(
2013
).
18.
X.
Lu
,
D. T.
Morelli
,
Y.
Xia
,
F.
Zhou
,
V.
Ozolins
,
C.
Hang
,
X.
Zhou
, and
C.
Uher
,
Adv. Energy Mater.
3
,
342
(
2013
).
19.
X.
Fan
,
E. D.
Case
, and
D. T.
Morelli
,
J. Mater. Sci.
48
,
7540
(
2013
).
20.
Y.
Bouyrie
,
C.
Candolfi
,
V.
Ohorodniichuk
,
B.
Malaman
,
A.
Dauscher
,
J.
Tobola
, and
B.
Lenoir
,
J. Mater. Chem. C
3
,
10476
(
2015
).
21.
M.
Bella
,
S.
Blayac
,
C.
Rivero
,
V.
Serradeil
, and
P.
Boulet
,
Comput. Mater. Sci.
108
,
264
(
2015
).
22.
K.
Suekuni
,
K.
Tsuruta
,
T.
Ariga
, and
M.
Koyano
,
Appl. Phys. Express
5
,
051201
(
2012
).
23.
X.
Lu
and
D.
Morelli
,
J. Electron. Mater.
43
,
1983
(
2014
).
24.
S.-Y.
Kim
,
G.-E.
Lee
, and
I.-H.
Kim
,
J. Korean Phys. Soc.
74
,
967
(
2019
).
25.
L. L.
Huang
,
Y. S.
Wang
,
C.
Zhu
,
R.
Xu
,
J. M.
Li
,
J. H.
Zhang
,
D.
Li
,
Z. M.
Wang
,
L.
Wang
,
C. J.
Song
,
H. X.
Xin
,
J.
Zhang
, and
X. Y.
Qin
,
J. Alloys Compd.
769
,
478
(
2018
).
26.
D. S.
Prem Kumar
,
R.
Chetty
,
O. E.
Femi
,
K.
Chattopadhyay
,
P.
Malar
, and
R. C.
Mallik
,
J. Electron. Mater.
78
,
1
(
2017
).
27.
X.
Lu
,
D. T.
Morelli
,
Y.
Wang
,
W.
Lai
,
Y.
Xia
, and
V.
Ozolins
,
Chem. Mater.
28
,
1781
(
2016
).
28.
T.
Barbier
,
S.
Rollin-Martinet
,
P.
Lemoine
,
F.
Gascoin
,
A.
Kaltzoglou
,
P.
Vaqueiro
,
A. V.
Powell
, and
E.
Guilmeau
,
J. Am. Ceram. Soc.
99
,
51
(
2016
).
29.
D. I.
Nasonova
,
V. Y.
Verchenko
,
A. A.
Tsirlin
, and
A. V.
Shevelkov
,
Chem. Mater.
28
,
6621
(
2016
).
30.
J.
Zhang
,
X.
Qin
,
D.
Li
,
Y.
Liu
,
Y.
Li
,
C.
Song
,
H.
Xin
, and
X.
Zhu
,
Appl. Phys. Lett.
108
,
073902
(
2016
).
31.
C.
Li
,
X.
Qin
,
Y.
Li
,
D.
Li
,
J.
Zhang
,
H.
Guo
,
H.
Xin
, and
C.
Song
,
J. Alloys Compd.
661
,
389
(
2016
).
32.
X. H.
Yang
,
X. Y.
Qin
,
J.
Zhang
,
D.
Li
,
H. X.
Xin
, and
M.
Liu
,
J. Alloys Compd.
558
,
203
(
2013
).
33.
E. J.
Skoug
,
J. D.
Cain
,
D. T.
Morelli
,
M.
Kirkham
, and
E.
Lara-Curzio
,
J. Appl. Phys.
110
,
073713
(
2011
).
34.
A.
Suzumura
,
M.
Watanabe
,
N.
Nagasako
, and
R.
Asahi
,
J. Electron. Mater.
43
,
2356
(
2014
).
35.
P.
Levinsky
,
C.
Candolfi
,
A.
Dauscher
,
B.
Lenoir
, and
J.
Hejtmánek
,
J. Electron. Mater.
48
,
1926
(
2019
).

Supplementary Material

You do not currently have access to this content.