Hybrid systems consisting of a quantum emitter coupled to a mechanical oscillator are receiving increasing attention for fundamental science and potential applications in quantum technologies. In contrast to most of the presented works in this field, in which the oscillator eigenfrequencies are irreversibly determined by the fabrication process, we present here a simple approach to obtain frequency-tunable mechanical resonators based on suspended nanomembranes. The method relies on a micromachined piezoelectric actuator, which we use both to drive resonant oscillations of a suspended Ga(Al)As membrane with embedded quantum dots and to fine-tune their mechanical eigenfrequencies. Specifically, we excite oscillations with frequencies of at least 60 MHz by applying an AC voltage to the actuator and tune the eigenfrequencies by at least 25 times their linewidth by continuously varying the elastic stress state in the membranes through a DC voltage. The light emitted by optically excited quantum dots is used as a sensitive local strain gauge to monitor the oscillation frequency and amplitude. We expect that our method has the potential to be applicable to other optomechanical systems based on dielectric and semiconductor membranes possibly operating in the quantum regime.

1.
J.
Chan
 et al,
Nature
478
,
89
(
2011
).
2.
R.
Riedinger
 et al,
Nature
556
,
473
(
2018
).
3.
I.
Wilson-Rae
,
P.
Zoller
, and
A.
Imamoḡlu
,
Phys. Rev. Lett.
92
,
075507
(
2004
).
4.
P.
Treutlein
,
C.
Genes
,
K.
Hammerer
,
M.
Poggio
, and
P.
Rabl
,
Cavity Optomech
(
Springer
,
Berlin/Heidelberg
,
2014
), pp.
327
351
.
5.
E. R.
Macquarrie
 et al,
Phys. Rev. Lett.
111
,
227602
(
2013
).
6.
R.
Ruskov
,
K.
Schwab
, and
A. N.
Korotkov
,
Phys. Rev. B
71
,
235407
(
2005
).
7.
S. A.
McGee
 et al,
Phys. Rev. A
87
,
053818
(
2013
).
8.
N.
Vostrosablin
,
A. A.
Rakhubovsky
, and
R.
Filip
,
Phys. Rev. A
94
,
063801
(
2016
).
9.
M.
Zhang
 et al,
Appl. Phys. Lett.
105
,
051904
(
2014
).
10.
G. O.
Luiz
 et al,
Opt. Express
25
,
31347
(
2017
).
11.
G.
Heinrich
 et al,
Phys. Rev. Lett.
107
,
043603
(
2011
).
12.
M.
Zalalutdinov
 et al,
Appl. Phys. Lett.
83
,
3281
(
2003
).
13.
M.
Zhang
 et al,
Phys. Rev. Lett.
109
,
233906
(
2012
).
14.
W. M.
Zhang
 et al,
Sensors
15
,
26478
(
2015
).
15.
M. A. A.
Hafiz
,
L.
Kosuru
, and
M. I.
Younis
,
Nat. Commun.
7
,
11137
(
2016
).
16.
G. S.
Wiederhecker
 et al,
Opt. Express
19
,
2782
(
2011
).
17.
R.
Perahia
 et al,
Appl. Phys. Lett.
97
,
191112
(
2010
).
18.
M.
Winger
 et al,
Opt. Express
19
,
24905
(
2011
).
19.
L.
Midolo
,
A.
Schliesser
, and
A.
Fiore
,
Nat. Nanotechnol.
13
,
11
(
2018
).
20.
Q. P.
Unterreithmeier
,
E. M.
Weig
, and
J. P.
Kotthaus
,
Nature
458
,
1001
(
2009
).
21.
H.
Pfeifer
 et al,
Opt. Express
24
,
11407
(
2016
).
22.
J.
Rieger
 et al,
Appl. Phys. Lett.
101
,
103110
(
2012
).
23.
S. C.
Masmanidis
 et al,
Science
317
,
780
(
2007
).
24.
X.
Yuan
 et al,
Nat. Commun.
9
,
3058
(
2018
).
25.
K. C.
Balram
 et al,
Nat. Photonics
10
,
346
(
2016
).
26.
I.
Yeo
 et al,
Nat. Nanotechnol.
9
,
106
(
2014
).
27.
S. G.
Carter
 et al,
Phys. Rev. Lett.
121
,
246801
(
2018
).
28.
M.
Montinaro
 et al,
Nano Lett.
14
,
4454
(
2014
).
29.
F. J. R.
Schülein
 et al,
Nat. Nanotechnol.
10
,
512
(
2015
).
30.
M.
Metcalfe
 et al,
Phys. Rev. Lett.
105
,
037401
(
2010
).
31.
J. R.
Gell
 et al,
Appl. Phys. Lett.
93
,
081115
(
2008
).
32.
G.
Piredda
 et al,
Appl. Phys. A
125
,
201
(
2019
).
33.
C.
Heyn
 et al,
Appl. Phys. Lett.
94
,
183113
(
2009
).
34.
Y. H.
Huo
,
A.
Rastelli
, and
O. G.
Schmidt
,
Appl. Phys. Lett.
102
,
152105
(
2013
).
35.
D.
Ziss
 et al,
J. Appl. Phys.
121
,
135303
(
2017
).
36.
R.
Trotta
 et al,
Nat. Commun.
7
,
10375
(
2016
).
37.
J.
Martín-Sánchez
 et al,
Adv. Opt. Mater.
4
,
682
(
2016
).
38.
M.
Weiß
and
H. J.
Krenner
,
J. Phys. D
51
,
373001
(
2018
).
39.
E. D. S.
Nysten
 et al,
J. Phys. D
50
,
43LT01
(
2017
).
40.
M.
Weiß
 et al,
Phys. Rev. Appl.
9
,
014004
(
2018
).
41.
F. R.
Braakman
 et al,
Appl. Phys. Lett.
105
,
173111
(
2014
).
42.
S. S.
Verbridge
 et al,
Nano Lett.
7
,
1728
(
2007
).
43.
S. S.
Verbridge
 et al,
J. Appl. Phys.
99
,
124304
(
2006
).
44.
Q. P.
Unterreithmeier
,
T.
Faust
, and
J. P.
Kotthaus
,
Phys. Rev. Lett.
105
,
027205
(
2010
).
45.
M.
Bückle
 et al,
Appl. Phys. Lett.
113
,
201903
(
2018
).
46.
J. M. L.
Miller
 et al,
Appl. Phys. Rev.
5
,
041307
(
2018
).
47.
M.
Weiß
 et al,
Appl. Phys. Lett.
109
,
033105
(
2016
).
48.
M.
Gong
 et al,
Phys. Rev. Lett.
106
,
227401
(
2011
).
49.
R.
Trotta
 et al,
Phys. Rev. Lett.
109
,
147401
(
2012
).
50.
R.
Blattmann
 et al,
Phys. Rev. A
89
,
012327
(
2014
).
51.
R. K.
Malla
and
M. E.
Raikh
,
Phys. Rev. B
97
,
035428
(
2018
).
52.
Y.
Kato
 et al,
Science
299
,
1201
(
2003
).
53.
H. M. G. A.
Tholen
 et al,
Phys. Rev. B
94
,
245301
(
2016
).
54.
J.
Houel
 et al,
Phys. Rev. Lett.
112
,
107401
(
2014
).
55.
K. Y.
Fong
 et al,
Appl. Phys. Lett.
97
,
073112
(
2010
).

Supplementary Material

You do not currently have access to this content.