Photoluminescence and radiophotoluminescence measurements were performed on the promising dosimeter compound NaMgF3 doped with Sm at different temperatures. Quenching of the Sm2+ photoluminescence during continuous 448 nm optical stimulation into the Sm2+ 4f 55d1 level was observed at high temperatures. We attribute this to photothermal ionization from the Sm2+ 4f 6(7F0) ground state to the NaMgF3 conduction band followed by nonradiative decay to the Sm2+ ground state. This was confirmed by X-ray-induced radiophotoluminescence, Sm3+ + e → Sm2+, where the valence conversion was reversed by simultaneous thermal and optical stimulation. From these measurements, we deduce that the energy from the Sm2+ 4f 55d1 level to the conduction band is 1.2 eV and the energy from the Sm2+ 4f 6(7F0) ground state to the conduction band is approximately 4.0 eV. Thus, we provide an alternative method to determine the trap depths of divalent lanthanides in insulators, which is of critical importance in the development of commercially relevant luminescent materials.

1.
X.
Liang
,
Y.
Yang
,
C.
Zhu
,
S.
Yuan
,
G.
Chen
,
A.
Pring
, and
F.
Xia
,
Appl. Phys. Lett.
91
,
091104
(
2007
).
2.
J. S.
Souris
,
S.-H.
Cheng
,
C.
Pelizzari
,
N.-T.
Chen
,
P. L.
Riviere
,
C.-T.
Chen
, and
L.-W.
Lo
,
Appl. Phys. Lett.
105
,
203110
(
2014
).
4.
Y.
Zhuang
,
J.
Ueda
, and
S.
Tanabe
,
Appl. Phys. Lett.
105
,
191904
(
2014
).
5.
J.
Qiu
,
K.
Miura
,
T.
Suzuki
,
T.
Mitsuyu
, and
K.
Hirao
,
Appl. Phys. Lett.
74
,
10
(
1999
).
6.
C. W.
Thiel
,
T.
Bottger
, and
R. L.
Cone
,
J. Lumin.
131
,
353
(
2011
).
7.
Z.
Cao
,
X.
Wei
,
L.
Zhao
,
Y.
Chen
, and
M.
Yin
,
ACS Appl. Mater. Interfaces
8
,
34546
(
2016
).
8.
S.
Kamimura
,
H.
Yamada
, and
C.-N.
Xu
,
Appl. Phys. Lett.
101
,
091113
(
2012
).
9.
M.
Suta
and
C.
Wickleder
,
J. Lumin.
210
,
210
(
2019
).
10.
J. J.
Schuyt
and
G. V. M.
Williams
,
Mater. Res. Bull.
106
,
455
(
2018
).
11.
J. J.
Schuyt
and
G. V. M.
Williams
,
Radiat. Meas.
121
,
99
(
2019
).
12.
G.
Okada
,
B.
Morell
,
C.
Koughia
,
A.
Edgar
,
C.
Varoy
,
G.
Belev
,
T.
Wysokinski
,
D.
Chapman
, and
S.
Kasap
,
Appl. Phys. Lett.
99
,
121105
(
2011
).
13.
J. J.
Schuyt
,
J.
Donaldson
,
G. V. M.
Williams
, and
S. V.
Chong
,
J. Phys.: Condens. Matter
32
,
025703
(
2020
).
14.
J. J.
Schuyt
and
G. V. M.
Williams
,
J. Lumin.
211
,
413
(
2019
).
15.
X.
Song
,
R.
Fu
,
S.
Agathopoulos
,
H.
He
,
X.
Zhao
, and
S.
Zhang
,
J. Appl. Phys.
106
,
033103
(
2009
).
16.
P.
Dorenbos
,
J. Phys.: Condens. Matter
17
,
8103
(
2005
).
17.
N. R. J.
Poolton
,
A. J. J.
Bos
, and
P.
Dorenbos
,
J. Phys.: Condens. Matter
24
,
255502
(
2012
).
20.
P.
Dorenbos
,
Phys. Rev. B
85
,
165107
(
2012
).
21.
T.
Li
,
Z.
Wang
,
P.
Li
,
S.
Xu
,
Q.
Bai
, and
Z.
Yang
,
Luminescence
33
,
438
(
2017
).
22.
T. M.
Tolhurst
,
S.
Schmiechen
,
P.
Pust
,
P. J.
Schmidt
,
W.
Schnick
, and
A.
Moewes
,
Adv. Opt. Mater.
4
,
584
(
2016
).
23.
U.
Happek
,
S. A.
Basun
,
J.
Choi
,
J. K.
Krebs
, and
M.
Raukas
,
J. Alloys Compd.
303-304
,
198
(
2000
).
24.
J. W.
Quilty
,
J.
Robinson
,
G. A.
Appleby
, and
A.
Edgar
,
Rev. Sci. Instrum.
78
,
083905
(
2007
).
25.
J.
Punnoose
,
J.
Xu
,
A.
Sisniega
,
W.
Zbijewski
, and
J. H.
Siewerdsen
,
Med. Phys.
43
,
4711
(
2016
).
26.
B.
Henderson
and
G. F.
Imbusch
,
Optical Spectroscopy of Inorganic Solids
(
Oxford University Press
,
New York
,
2006
).
You do not currently have access to this content.