We generate optimal topologies in the structural design of bifunctional cloaks manipulating heat flux and direct current, using topology optimization that incorporates both thermal conductivity and electrical direct current. The bifunctional cloak composed of bulk isotropic materials is designed to restrain thermal and electrical disturbances caused by an insulated obstacle by minimizing the difference between cloaked distributions and referenced distributions when no obstacle is present. Our results show that the presented optimizations provide bifunctional cloaks that reproduce undisturbed temperature and voltage distributions. We also demonstrate topology optimizations for bifunctional cloaks operating for multiangle flows and those for cloaks that are robust against variations in conductive properties.

1.
A.
Alù
and
N.
Engheta
,
Phys. Rev. E
72
,
016623
(
2005
).
3.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
(
2006
).
4.
S. A.
Cummer
and
D.
Schurig
,
New J. Phys.
9
,
45
(
2007
).
5.
C. Z.
Fan
,
Y.
Gao
, and
J. P.
Huang
,
Appl. Phys. Lett.
92
,
251907
(
2008
).
6.
F.
Yang
,
Z. L.
Mei
,
T. Y.
Jin
, and
T. J.
Cui
,
Phys. Rev. Lett.
109
,
053902
(
2012
).
7.
A.
Alù
and
N.
Engheta
,
Phys. Rev. Lett.
102
,
233901
(
2009
).
8.
R.
Fleury
,
J.
Soric
, and
A.
Alù
,
Phys. Rev. B
89
,
045122
(
2014
).
9.
T.
Han
,
X.
Bai
,
J. T. L.
Thong
,
B.
Li
, and
C.-W.
Qiu
,
Adv. Mater.
26
,
1731
(
2014
).
10.
M. P.
Bendsøe
and
N.
Kikuchi
,
Comput. Methods Appl. Mech. Eng..
71
,
197
(
1988
).
11.
J.
Andkjær
and
O.
Sigmund
,
Appl. Phys. Lett.
98
,
021112
(
2011
).
12.
J.
Andkjær
,
N. A.
Mortensen
, and
O.
Sigmund
,
Appl. Phys. Lett.
100
,
101106
(
2012
).
13.
G.
Fujii
,
H.
Watanabe
,
T.
Yamada
,
T.
Ueta
, and
M.
Mizuno
,
Appl. Phys. Lett.
102
,
251106
(
2013
).
14.
G.
Fujii
and
T.
Ueta
,
Phys. Rev. E
94
,
043301
(
2016
).
15.
N.
Kishimoto
,
K.
Izui
,
S.
Nishiwaki
, and
T.
Yamada
,
Appl. Phys. Lett.
110
,
201104
(
2017
).
16.
G.
Fujii
,
M.
Takahashi
, and
Y.
Akimoto
,
Comput. Methods Appl. Mech. Eng.
332
,
624
(
2018
).
17.
J.
Andkjær
and
O.
Sigmund
,
J. Vib. Acoust.
135
,
041011
(
2013
).
18.
M.
Takahashi
,
Y.
Akimoto
, and
G.
Fujii
,
Trans. Jpn. Soc. Mech. Eng.
84
,
17-00590
(
2018
).
19.
G.
Fujii
,
Y.
Akimoto
, and
M.
Takahashi
,
Appl. Phys. Lett.
112
,
061108
(
2018
).
20.
G.
Fujii
and
Y.
Akimoto
,
Int. J. Heat Mass Transfer
137
,
1312
(
2019
).
21.
G.
Fujii
,
Y.
Akimoto
, and
M.
Takahashi
,
J. Appl. Phys.
123
,
233102
(
2018
).
22.
G.
Fujii
and
Y.
Akimoto
,
Opt. Lett.
44
,
2057
(
2019
).
23.
J. Y.
Li
,
Y.
Gao
, and
J. P.
Huang
,
J. Appl. Phys.
108
,
074504
(
2010
).
24.
M.
Moccia
,
G.
Castaldi
,
S.
Savo
,
Y.
Sato
, and
V.
Galdi
,
Phys. Rev. X
4
,
021025
(
2014
).
25.
Y.
Ma
,
Y.
Liu
,
M.
Raza
,
Y.
Wang
, and
S.
He
,
Phys. Rev. Lett.
113
,
205501
(
2014
).
26.
M.
Raza
,
Y.
Liu
, and
Y.
Ma
,
J. Appl. Phys.
117
,
024502
(
2015
).
27.
C.
Lan
,
K.
Bi
,
Z.
Gao
,
B.
Li
, and
J.
Zhou
,
Appl. Phys. Lett.
109
,
201903
(
2016
).
28.
T.
Han
,
X.
Bai
,
D.
Gao
,
J. T. L.
Thong
,
B.
Li
, and
C.-W.
Qiu
,
Phys. Rev. Lett.
112
,
054302
(
2014
).
29.
T.
Han
,
P.
Yang
,
Y.
Li
,
D.
Lei
,
B.
Li
,
K.
Hippalgaonkar
, and
C.-W.
Qiu
,
Adv. Mater.
30
,
1804019
(
2018
).
30.
T.
Han
,
H.
Ye
,
Y.
Luo
,
S. P.
Yeo
,
J.
Teng
,
S.
Zhang
, and
C.-W.
Qiu
,
Adv. Mater.
26
,
3478
(
2014
).
31.
N.
Hansen
and
A.
Ostermeier
,
Evol. Comput.
9
,
159
(
2001
).
32.
Y.
Liu
,
W.
Guo
, and
T.
Han
,
Int. J. Heat Mass Transfer
115
,
1
(
2017
).
33.
J.
Qin
,
W.
Luo
,
P.
Yang
,
B.
Wang
,
T.
Deng
, and
T.
Han
,
Int. J. Heat Mass Transfer
141
,
487
(
2019
).
You do not currently have access to this content.